Nonlinear Numerical Modelling of FRP Reinforced Glued Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue73
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Raftery, Gary
Harte, Annette
Publisher
ScienceDirect
Year of Publication
2013
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Fiber Reinforced Polymer
Finite Element Model
Flexural
Hybrid
Low-Grade
Model
Modulus of Rupture
Reinforcement
Stiffness
Strength
Spruce
Research Status
Complete
Series
Composites Part B: Engineering
Summary
Fibre-reinforced polymers (FRPs) are effective in the flexural stiffening and strengthening of structural members. Such systems can be optimised if accurate numerical models are developed. At present, limited information is available in the literature on numerical models that can predict with good accuracy the nonlinear behaviour of FRP reinforced low-grade glued laminated timber beams. This paper discusses the development of a finite element model, which incorporates nonlinear material modelling and nonlinear geometry to predict the load–deflection behaviour, stiffness, ultimate moment capacity and strain distribution of FRP plate reinforced glued laminated timber beams manufactured from mechanically stress graded spruce. Beams with and without sacrificial laminations are modelled and their performance is compared to unreinforced glued laminated timber beams. The model employed anisotropic plasticity theory for the timber in compression. The failure model used was the maximum stress criterion. Strong agreement was obtained between the predicted behaviour and the associated experimental findings. It was deduced from comparing the results from the numerical model with experimental findings that the FRP plate succeeds in increasing the performance of the adjacent timber significantly. The model is a useful tool for examination of the effect of reinforcement percentage and will be used for optimisation of the hybrid beam.
Online Access
Free
Resource Link
Less detail