Application of a Translational Tuned Mass Damper Designed by Means of Genetic Algorithms on a Multistory Cross-Laminated Timber Building 

https://research.thinkwood.com/en/permalink/catalogue413
Year of Publication
2015
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Poh’sié, Guillaume
Chisari, Corrado
Rinaldin, Giovanni
Fragiacomo, Massimo
Amadio, Claudio
Ceccotti, Ario
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Translational Tuned Mass Damper
Dynamic Analysis
Multi-Story
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
This paper presents a numerical study conducted on a seven-story timber building made of cross-laminated (X-lam) panels, equipped with a linear translational tuned mass damper (TMD). The TMD is placed on the top of the building as a technique for reducing the notoriously high drifts and seismic accelerations of these types of structures. TMD parameters (mass, stiffness, and damping) were designed using a genetic algorithm (GA) technique by optimizing the structural response under seven recorded earthquake ground motions compatible, on average, with a predefined elastic spectrum. Time-history dynamic analyses were carried out on a simplified two-degree-offreedom system equivalent to the multistory building, while a detailed model of the entire building using two-dimensional elastic shell elements and elastic springs for modeling connections was used as a verification of the evaluated solution. Several comparisons between the response of the structure with and without TMD subjected to medium- and high-intensity recorded earthquake ground motions are presented, and the effectiveness and limits of these devices for improving the seismic performance of X-lam buildings are critically evaluated.
Online Access
Free
Resource Link
Less detail