Evaluating Laboratory Measurements for Sound Insulation of Cross-Laminated Timber (CLT) Floors: Configurations in Lightweight Buildings

https://research.thinkwood.com/en/permalink/catalogue3157
Year of Publication
2022
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Vardaxis, Nikolaos-Georgios
Hagberg, Delphine Bard
Dahlström, Jessica
Organization
Lund University
Editor
Park, Junhong
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Airborne Sound
Impact Noise
Sound Insulation
Research Status
Complete
Series
Applied Sciences
Summary
Cross-laminated timber (CLT) floors with supplementary layers or floating floors comprise a common solution in new multistory timber structures. However, bare CLT components provide poor sound insulation, especially in low frequencies during structure-borne sound propagation. Thus, floor configurations in wooden buildings deploy more layers for improved acoustic behavior. Twelve contemporary CLT floors were analyzed after laboratory measurements of airborne sound reduction and impact sound transmission utilizing the following indicators: Rw, Rw, 100, Rw, 50, Ln,w, Ln,w,100, and Ln,w,50 (per ISO 10140, ISO 717). An increase in sound insulation was achieved thanks to added total mass and thickness, testing layers of the following: elastic mat for vibration isolation, wool insulation, gypsum boards, plywood, concrete screed, and wooden parquet floor. The results indicate that multilayered CLT floors can provide improvements of up to 22 dB for airborne sound and 32 dB for impact sound indicators compared with the bare CLT slab. Floating floor configurations with dry floor solutions (concrete screed) and wooden parquet floors stand out as the optimal cases. The parquet floor provides a 1–2 dB improvement only for impact sound indicators in floating floor setups (or higher in three cases).
Online Access
Free
Resource Link
Less detail