High Performance CFRP-Timber-Concrete Laminated Composite Members

https://research.thinkwood.com/en/permalink/catalogue1698
Year of Publication
2016
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Author
Balogh, Jeno
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Beams
Topic
Mechanical Properties
Keywords
Strength
Stiffness
Loading
Short-term
Laboratory Tests
Finite Element Model
Tension
CFRP
Failure Mode
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4352-4359
Summary
This paper deals with laminated timber-concrete (LTC) composite beam members, for applications in sustainable building structures, in which the interlayer connection is achieved with adhesives, similarly to the glued laminated timber beams, instead of the classically used shear connectors (e.g. mechanical connectors or notches). Only a small number of studies of this type of high-performance members are available. The strength and stiffness of the LTC under short-term static ramp-loading were studied on new and retrofit (joist-type) floor members, through laboratory tests and non-linear finite element modelling. In the initial tests the typical failure mode observed was the failure of the wood in tension. Consequently, a carbon fibre reinforced polymer (CFRP) layer was added to the tension side of the timber layer, forming a multi-composite member. The research results indicate that the structural performance in terms of efficiencies and strength for the LTC beams exceeds the corresponding performance of similar classical timber-concrete beams with shear connectors due to the different shear transfer and failure modes. By adding the CFRP reinforcement to the tension fibres of the timber layer, the failure mode changed again, allowing for further increase in strength and stiffness.
Online Access
Free
Resource Link
Less detail