The use of timber–concrete composite (TCC) bridges in the United States dates back to approximately 1924 when the first bridge was constructed. Since then a large number of bridges have been built, of which more than 1,400 remain in service. The oldest bridges still in service are now more than 84 years old and predominately consist of two different TCC systems. The first system is a slab-type system that includes a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system is a stringer system that includes either sawn timber or glulam stringers supporting a concrete deck top layer. The records indicate that most of the TCC highway bridges were constructed during the period of 1930–1960. The study presented in this paper discusses the experience and per-formance of these bridge systems in the US. The analysis is based on a review of the relevant literature and databases complemented with field inspections conducted within various research projects. Along with this review, a historical overview of the codes and guidelines available for the design of TCC bridges in the US is also included. The analysis undertaken showed that TCC bridges are an effective and durable design alternative for highway bridges once they have shown a high performance level, in some situations after more than 80 years in service with a low maintenance level.
Project contact is Erol Karacabeyli at FPInnovations
Summary
To support NRCan's Tall Wood Building Demonstration Initiative, FPInnovations developed and published the 2014 Edition of Technical Guide for the Design and Construction of Tall Wood Buildings in Canada. More than 80 technical professionals comprised of design consultants and experts from FPInnovations, the National Research Council, the Canadian Wood Council and universities were involved in its development. The Guide has gained national and worldwide reputation as one of the most complete and credible documents helping to introduce to the design and construction community, and Authorities Having Jurisdiction the terms "Mass Timber Construction" and "Hybrid Tall Wood Buildings".
Since the publication of the First Edition, a number of tall wood buildings have been designed and constructed. Substantial regulatory changes are expected to happen based on the experience obtained from the demonstration initiative and the extensive research that has taken place domestically and internationally since the publication of the First Edition. These developments highlight a need for the Guide to be updated so that it aligns with efforts currently underway nationally and provincially and continues to lead in providing the design and construction community technical insight into new opportunities for building in wood.
The First Edition of the Guide helped to focus the efforts of the early adopters who participated in NRCan's Tall Wood Building Demonstration Initiative. Updating and aligning the Guide with the release of the new National Building Code of Canada and the Canadian wood design standard (CSA O86), and sharing the experiences gained from tall wood buildings built since the First Edition, will not only continue to expand the base of early adopters, but also help to move aspects of mass timber and hybrid wood buildings into the mainstream.
Strength parameters for fasteners determined in accordance with the methods prescribed for the European CE-marking leads to quite different values for seemingly similar products from different manufactures. The results are hardly repeatable, to some extent due to difficulties in selecting representative on engineered wood products...