Behaviour of Cross-Laminated Timber Subjected to Blast Loading

https://research.thinkwood.com/en/permalink/catalogue2451
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Poulin, Mathieu
Organization
University of Ottawa
Year of Publication
2019
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Blast Loading
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Damage Assessment of Cross Laminated Timber Connections Subjected to Simulated Earthquake Loads

https://research.thinkwood.com/en/permalink/catalogue70
Year of Publication
2012
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Damage
Panels
North American Market
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 15-19, 2012, Auckland, New Zealand
Summary
Wood-frame is the most common construction type for residential buildings in North America. However, there is a limit to the height of the building using a traditional wood-frame structure. Cross-laminated timber (CLT) provides possible solutions to mid-...
Online Access
Free
Resource Link
Less detail

Performance of Steel Energy Dissipators Connected to Cross-Laminated Timber Wall Panels Subjected to Tension and Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue652
Year of Publication
2016
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Kramer, Anthonie
Barbosa, André
Sinha, Arijit
Publisher
American Society of Civil Engineers
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Energy Dissipation
Digital Image Correlation
Strain Behavior
Yield Behavior
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
This paper presents a new alternative energy dissipation solution to be used with cross-laminated timber (CLT) self-centering walls. CLT is a relatively new building product in North America and could potentially be used for high-rise construction. The development of high-performance seismic design solutions is necessary to encourage innovative structures and the design of these structures to new heights. The objective of this paper is to propose a wall-to-floor connection system that is easy to install and replace (structural fuse) after the occurrence of a large damaging event. The proposed energy dissipators are fabricated following concepts used in developing steel buckling restrained steel braces (BRB), having a milled portion, which is designed to yield and is enclosed within a grouted steel pipe. The connection system is investigated experimentally through a test sequence of displacement-controlled cycles based on a modified version of the test method developed by the American Concrete Institute (ACI) to facilitate development of special precast systems (ACI T1.1-01 Acceptance Criteria for Moment Frames Based on Structural Testing). Digital Image Correlation (DIC) was used to analyze strain behavior of the milled portion, as well as track movement of the panels during quasi-static uniaxial and cyclic testing. The results show the yield behavior and energy dissipation properties of the connection system. Damage was focused primarily in the energy dissipators, with negligible deformation and damage to the CLT panels and connections.
Online Access
Free
Resource Link
Less detail

Experimental Study on Loading Capacity of Glued-Laminated Timber Arches Subjected to Vertical Concentrated Loads

https://research.thinkwood.com/en/permalink/catalogue2581
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Author
Zhou, Jiale
Chuanxi, Li
Ke, Lu
He, Jun
Wang, Zhifeng
Publisher
Hindawi
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Topic
Design and Systems
Keywords
In-Plane Loading
Capacity
Douglas-Fir
Model
Failure Modes
Language
English
Research Status
Complete
Series
Advances in Civil Engineering
Summary
Glued-laminated timber arches are widely used in gymnasiums, bridges, and roof trusses. However, studies on their mechanical behaviours and design methods are still insufficient. This paper investigates the in-plane loading capacity of circular glued-laminated timber arches made of Douglas fir. Experiments were conducted on four timber-arch models with different rise-to-span ratios under concentrated loads at mid-span and quarter-point locations. The structural responses, failure modes, and loading capacity of the timber arch specimens were obtained. The results show that the timber arches presented symmetric and antisymmetric deformation under mid-point and quarter-point loading conditions, respectively. The downward shifting of the neutral axis of the cross section was observed under mid-point loading condition, which contributes to higher loading capacity compared to that under quarter-point loading condition. The loading condition significantly affects the ultimate loads and the strain distribution in the cross section. Based on the design formula in current standards for timber structures, an equivalent beam-column method was introduced to estimate the loading capacity of the laminated timber arches under vertical concentrated loads. The moment amplification factor in the formula was compared and discussed, and the value provided in the National Design Specification for Wood Construction was recommended with acceptable accuracy.
Online Access
Free
Resource Link
Less detail

Elastic Response of Cross-Laminated Engineered Bamboo Panels Subjected to In-Plane Loading

https://research.thinkwood.com/en/permalink/catalogue2305
Year of Publication
2019
Topic
Design and Systems
Material
Other Materials
Application
Walls
Wood Building Systems
Author
Archila-Santos, Hector
Rhead, Andrew
Publisher
ICE Publishing
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
Other Materials
Application
Walls
Wood Building Systems
Topic
Design and Systems
Keywords
G-XLam
Panels
Strength
Stiffness
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-650X
Online Access
Free
Resource Link
Less detail

Performance of Two-Storey CLT House Subjected to Lateral Loads

https://research.thinkwood.com/en/permalink/catalogue376
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Popovski, Marjan
Gavric, Igor
Schneider, Johannes
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
Lateral Loads
North America
Building Codes
Full Scale
Quasi-Static
Monotonic Loading
Cyclic Loading
Failure Mechanism
Language
English
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. A two storey full-scale model of a CLT house was tested under quasi-static monotonic and cyclic lateral loading in two directions, one direction at a time. In total five tests were performed; one push-over and two cyclic tests were conducted in the longer symmetrical direction (E-W), and two cyclic tests were performed in the shorter asymmetrical direction (N-S). In addition, before and after each test, natural frequencies of the house in both directions were measured. The main objective of the tests was to investigate 3-D system behaviour of the CLT structure subjected to lateral loads. The CLT structure subjected to lateral loads performed according to the design objectives.
Online Access
Free
Resource Link
Less detail

Flexural Response of Glued Laminated (Glulam) Beams Subjected to Blast Loads

https://research.thinkwood.com/en/permalink/catalogue492
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Lacroix, Daniel
Viau, Christian
Doudak, Ghasan
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Strain
Flexural Behaviour
Blast Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
An extensive body of research is currently available on the behaviour of concrete and steel structures when subjected to blast threats, however, little to no details on how to address the design or retrofitting of wood structures are available. In this paper, preliminary results, both experimental and analytical, are presented on the flexural behaviour of glulam beams under high strain rates. A total of three 80 mm x 228 mm x 2,500 mm glulam beams with a clear span of 2,235 mm were subjected to simulated blast loads using a shock tube. The preliminary experimental results showed that a brash tension failure mode was observed on the tension laminate. It was also shown that a simplified SDOF model, using linear elastic resistance curves, was capable of predicting the failure displacement and level of damage with reasonable accuracy.
Online Access
Free
Resource Link
Less detail

Experimental and Analytical Investigation of Short-Term Behaviour of LVL–Concrete Composite Connections And Beams

https://research.thinkwood.com/en/permalink/catalogue150
Year of Publication
2012
Topic
Connections
Design and Systems
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Beams
Author
Khorsandnia, Nima
Valipour, Hamid
Crews, Keith
Publisher
ScienceDirect
Year of Publication
2012
Country of Publication
Netherlands
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Beams
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Four Point Bending Test
Screws
Load Deflection
Model
Full Scale
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper reports the results of experimental push-out tests on three different types of timber–concrete composite (TCC) connections, including normal screw, SFS and bird-mouth. The load-slip diagrams obtained from lab tests are employed to calculate the slip modulus of the connections for serviceability, ultimate and near collapse cases based on Eurocode 5 recommendations. Additionally, four full-scale TCC beams with normal screw, SFS and bird-mouth are constructed and tested under four-point bending within the serviceability load range to verify the slip modulus of connections which derived from the push-out tests. Further, based on the experimental results and using nonlinear regression, an analytical model each one of the connections is derived which can be easily incorporated into nonlinear FE analyses of TCC beams.
Online Access
Free
Resource Link
Less detail

Behaviour of Glued-Laminated (Glulam) Beams and Columns Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue1549
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Author
Lacroix, Daniel
Doudak, Ghasan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Columns
Topic
Mechanical Properties
Keywords
Blast Loads
Static Loads
Dynamic Loads
Dynamic Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1199-1206
Summary
This paper presents preliminary results from an experimental program investigating the dynamic behaviour of glulam beams and columns subjected to simulated blast loads. A total of eight glulam beams and columns were tested destructively under static and dynamic loads. Based on the dynamic tests conducted on the beams, an increase in strength under dynamic loading, relative to that measured under the static loading, was observed. A material predictive model that accounts for high strain-rate effects is developed. The experimental displacement-time histories were reasonably well predicted through a single-degree-of-freedom approach which used the proposed resistance model as input.
Online Access
Free
Resource Link
Less detail

Numerical Study on De Elastic Buckling of CLT Walls Subjected to Compressive Loads

https://research.thinkwood.com/en/permalink/catalogue2169
Year of Publication
2019
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls