Project contacts are Grant Kirker (Forest Products Laboratory), Katie Ohno (Forest Products Laboratory) and C. Elizabeth Stokes (Mississippi State University)
Summary
Mass timber, as a renewable prefabricated structural panel material, is seen as highly desirable in the “green” building movement and has excellent thermal insulation, sound insulation, and fire restriction qualities. CLT is one of the more recent additions to the mass timber market worldwide, and although the product has undergone structural property testing in several laboratories, degradation testing of this non-preservative-treated product has only recently been initiated (Singh and Page 2016). Preliminary testing with exposure to Oligoporus placenta and Antrodia xantha indicated that untreated CLT is susceptible to the spread of mold and decay fungi, while treatment with boron somewhat reduced the extent of the decay fungus spread (Singh and Page 2016). These panels are easily handled on-site and have a much higher strength-to-weight ratio than their precast concrete competitors, which make them ideal for rapid construction of modular buildings, including apartment/condominium structures (Van de Kuilen et al. 2011). However, installations using CLT as a primary structural component in humid/damp climates, such as the southeastern United States, may be heavily affected by molds and decay fungi, and effects on CLT strength should be determined prior to widespread use of the product in these areas.