Cross-laminated timber (CLT) constitutes a promising solution for numerous structural applications, including for large and tall residential and commercial buildings. The prospect of building larger timber structures creates some structural challenges, amongst them being that lateral forces created by high winds and strong earthquakes are higher and create higher demands of “holddowns”. The Canadian Standard for Engineering Design in Wood CSA-O86 does not (yet) provide any specific procedures to estimate the resistance of mass-timber Lateral Load Resisting Systems (LLRS) nor how to facilitate the targeted kinematic mode, especially for multi-panel walls where the LLRS behaviour is a function of connection behaviour.
The project investigated the viability of internal-perforated-steel-plates (ISP) with self-drilling dowels as high-performance connections for CLT LLRS. The project objective was to contribute towards the development of reliable design guidance for ISP connections. To achieve this objective, first at the material level, the properties of the used steel-plates and dowels were verified. Then, at the component level, the performance of shear connections and hold-downs were investigated by performing quasi-static monotonic and reversed cyclic tests.
The most significant finding of the component level tests was the proof that it is possible to control the strength, stiffness, and ductility only through the IPSP and avoid bending of the SDD or crushing of the wood. Furthermore, the length of the steel perforations had a large impact on the performance with the steel-plates with the long slots (Type-D and Type-E) exhibiting lower strength and stiffness. For the hold-down tests, the same perforation geometry as for the shear-connection tests was chosen. As already determined in the shear-connection tests, the hold-down specimens with the short perforation slots resulted in the strongest and stiffest connection.
The results from this project will be used to design and test CLT shear walls with ISP connections.