International Structural Engineering and Construction Conference
Research Status
Complete
Series
Proceedings of International Structural Engineering and Construction
Summary
The main objective of this paper is to study the structural performance of a high-rise
structure when alternative lightweight material known as cross-laminated timber was
used as a slab in floor system in lieu of conventional reinforced concrete slab. A
numerical case study was conducted using a highly irregular RC frame building with its
two 60-story towers joined at the top. Three major analyses were considered. First,
modeling and analyzing the building with an RC slab was conducted to determine the
design reference. Second, substituting the RC slab with the CLT slab was performed
using the same building skeleton. Third, redesigning and optimizing the building
skeleton with that CLT to observe skeleton material saving obtained using the same
structural performance criteria. Major lateral loads applicable in the Eastern Province
of Saudi Arabia were inputted. Strengths and serviceability requirements for floor
diaphragm and lateral load resisting system were checked first before performing a
comparative analysis between traditional RC and CLT slabs as floor diaphragm. The
structural performance criteria to be used for comparative study between RC and CLT
slabs included total drift, inter-story drift due to lateral loads, and base reactions.
Structural periods and acceleration responses for each floor were investigated and
contrasted with the existing building code. The foundation demand was also
investigated based on the structural weight and reactions generated from the RC and
CLT floor systems.