Cross-Laminated Timber (CLT) is a new engineered wood material that was introduced in the past decade as a promising candidate to build structures over 10 stories. So far, a handful of tall CLT buildings have been built in low seismic regions around the world. Full-scaled seismic shaking table tests revealed the vulnerability of this building type when resisting seismically-induced overturning. This study proposes a new analysis and design approach for developing overturning resistance for platform CLT buildings. New structural detailing is proposed to alter the moment-resisting mechanism and enable coupled action through the floor system. The method is applied to the design of a 12-story CLT building, which was evaluated numerically to assess the conservativeness of the design through system level finite element model simulations.