An increased environmental conscientiousness in society and the abundance of timber in Canada has inevitably lead to the desire for more timber construction. In order to increase the opportunity for timber products in construction, novel building systems such as Post Tensioned (PT) timber are required. A model was developed and validated in Abaqus to investigate the ability of FEM software packages to model PT timber in fire conditions. The numerical model showed highly promising results for demonstrating the loading and failure behaviour of PT timber beams. Beam failure times were modelled within 5%, and load-deflection behaviour and failure mechanisms were accurately demonstrated. Additionally, the performance of timber adhesives after fire damage was examined after previous research suggested further investigation was required. Based on the experimental results, additional zero-strength layer thicknesses were estimated conservatively to be 23 mm beyond the char front (95th percentile) to account for the loss of strength (subject to various limitations). It is recommended that a new standardized test be developed for timber adhesives which quantifies the performance beyond the char layer in burnt engineered timber so that individual adhesives may be evaluated.