In this study, the preliminary serviceability performance of cross-laminated timber (CLT) panels constructed from fibre-managed Eucalyptus nitens (E. nitens) was investigated via bending and vibration tests. Linear four-point bending tests were performed to determine the stiffness and deflection of all CLT panels under serviceability loads. The dynamic response of CLT panels was tested using a basketball and an accelerometer. The fundamental natural frequencies of all tested panels were above the minimum frequency limit (8 Hz) when extrapolated to spans of up to 4.4 m. The configurations of E. nitens CLT panels were based on different modulus of elasticity (MOE) values for each board. Using higher MOE timber boards as the top and bottom layers can significantly increase the serviceability performance of both bending and vibration tests. The same experiments were carried out on two CLT panels made of strength class C24 Spruce-Pine-Fir to compare the serviceability performance of E. nitens CLT. The results demonstrated that E. nitens is a reliable resource for CLT manufacturing, and exhibits better serviceability performance compared to Spruce CLT. This provides more sustainable options for a species traditionally destined for pulp.
Proc. of 118th annual meeting of American Wood Protection Association
Research Status
Complete
Summary
The ability of soil insecticidal drenches or spray-on insecticide/fungicide treatments to protect mass timber elements was assessed using two modified AWPA ground proximity tests established in 2017 and 2019. The 2017 test evaluated 3-ply Douglas-fir cross-laminated timber using a modified AWPA Standard E26 while the 2019 test used a modified AWPA E21 protocol to evaluate 3-ply Douglas-fir or southern pine cross-laminated timber as well as Douglas-fir mass plywood panels. Both tests were installed at the Harrison Experimental Forest (Saucier, Mississippi) and will be assessed for five years. Treatments include an initial soil termiticide drench, spray-on borate at initiation, borate rods at initiation, remedial boron spray treatment two years after installation, and untreated controls. Samples were left undisturbed for one or two years and then rated for degree of termite and fungal damage. Moisture content of the test materials increased greatly over the non-disturbance period. Untreated control samples were attacked by both decay fungi and termites within the first year after test initiation. Soil termiticide treated plots showed no sign of termite attack, but decay was evident on some samples compared to non-soil termiticide treated plots. Samples treated with borates at test initiation showed limited decay or termite attack. The tests will continue to be evaluated for a period of at least 5 years or longer and serve as critical baseline data for field evaluation methods of mass timber in areas of high subterranean termite and decay pressure.
Borate solution was used to treat two sets of Douglas-fr wood samples, one by spraying cross-laminated timbers (CLT) and another set by dip-treating wood in solutions at different retentions. A novel model was developed to explain and predict borate uptake based on dip-treatment parameters. Small-scale CLT samples were prepared using commercial emulsion polymer isocyanate (EPI) and polyurethane (PU) adhesive with dip-treated wood. The effect of adhesive and borate retention on CLT samples were evaluated through adhesion, fire, termite, and decay tests. The adhesion strength of wood was statistically unaffected by borate treatment. Statistical analysis showed that both spray- and dip-treated samples had significantly higher termite and decay resistance and fire performance than the untreated boards. Untreated CLT samples bonded with PU showed a considerably higher inherent decay and termite resistance than untreated specimens bonded with EPI adhesive.
US manufacturers are looking to expand the use of cross-laminated timber (CLT) panels into the North American market, including states located in the southeast where termites are important pests. However, there is no current assessment method for determining CLT vulnerability to the highly destructive native termites found in many states across the United States. The impact of damage by these termites is of particularly high interest in areas with suitable climate to their proliferation, such as the southeastern United States. This study evaluated durability of CLT panels and developed a laboratory assay to test susceptibility of this product to termites. Untreated CLT suffered mass losses of up to 5.8% in testing with an average visual rating of 7.2, indicating a moderate to severe attack with 10-30% of the cross section of the product affected by termite intrusion. Recommendations were developed for the inclusion of modifications presented in standardized testing protocols and will be presented to standards organizations. The proposed method may also be applied to evaluate termite resistance of other mass lumber products such as laminated veneer lumber and Glulam.
ICSI 2021 The 4th International Conference on Structural Integrity
Research Status
Complete
Series
Procedia Structural Integrity
Summary
The durability of timber structures subjected to biotic attacks is becoming of increasing concern due to several recent examples of failures caused by early degradation. Therefore, the design process of a timber building cannot prescind from accounting for the possible degradation due to biotic attack, especially in light of the recent spread of high-rise timber buildings. Furthermore, it is of extreme importance that reliable models to foresee possible sources of degradation in existing buildings are made available so that retrofit interventions can be programmed before it is too late. In the work presented herein, the decay due to fungal attack was predicted through a risk-based approach where decision trees were created to address all the possible scenarios where water or moisture can intrude within the construction details that most affect the durability. These decision trees allow to assign a risk class, defined based on a thorough review of the major European standards addressing timber “use-classes”. The trees also lead to the selection of a proper prediction function for estimating the decay depth, chosen among suitable functions available in the literature. The proposed methodology was applied to selected case studies where a good correlation was found between the decay level detected onsite and the results from the prediction model. To facilitate the application of the methodology to both the design of new durable timber buildings and the assessment of existing timber structures, an ad hoc software tool named TSafe was developed. In the present paper, due to the length limit, the focus is on the decision trees and the risk classes, while just a brief description of the case study used for the procedure validation is given.
Stricter energy efficiency requirements of buildings have raised concerns about their effects on indoor air quality (IAQ). We studied measured and perceived IAQ in three low-energy wooden test buildings using three ventilation levels (0.5, 1.0, and 2.0 (dm3/s)/m2). IAQ measurements included VOC (volatile organic compounds) air sampling and continuous measurements of several IAQ indicators. Perceived air quality (PAQ) was investigated with a sensory panel of untrained volunteers. The results show that the TVOC (Total VOC) concentrations were relatively low in two of the buildings already at the beginning of the study (100–141 µg/m3), and the concentrations decreased in all test buildings when ventilation was increased from the lowest level. The third building made of pinewood timber showed higher VOC concentrations (340–857 µg/m3), especially for terpene compounds that are generally present in pinewood emissions. In the PAQ assessment, the percentage of people dissatisfied (PD) with the air quality decreased with increased ventilation in all studied buildings. However, at the lowest and highest ventilation, the pinewood building had the second-lowest PD despite higher VOC levels. The findings of this study can be utilized in interpreting the effects of ventilation design and material selection on IAQ in low-energy buildings.
The environment is one of the factors that may influence occupants’ perception of floor vibration and the assessment of floor serviceability. In this study, laboratory tests were conducted on a 3-ply CLT floor. Occupants’ assessment of the floor serviceability under human-induced vibration was investigated. Virtual reality (VR) technique was used as a research method, simulating two common environments in life. First, the correlation between the occupants’ annoyance rating and serviceability indicators (response factor and vibration dose value (VDV)) was compared with existing standards. The results show that the response factor method in ISO 10137:2007 is conservative for timber floors in both bedroom and gym environments. The VDV method in BS 6472-1:2008 can generally reflect the vibration acceptability of timber floor vibration. Then, the effect of acceleration and environment on the floor serviceability assessment was investigated through statistical methods, respectively. A weak positive correlation between the annoyance rating and the acceleration was found. The effect of the environment on floor vibration assessment was found to be significant.
The rise of wood buildings in the skylines of cities forces structural dynamic and timber experts to team up to solve one of the new civil-engineering challenges, namely comfort at the higher levels, in light weight buildings, with respect to wind-induced vibrations. Large laminated timber structures with mechanical joints are exposed to turbulent horizontal excitation with most of the wind energy blowing around the lowest resonance frequencies of 50 to 150 m tall buildings. Good knowledge of the spatial distribution of mass, stiffness and damping is needed to predict and mitigate the sway in lighter, flexible buildings. This paper presents vibration tests and reductions of a detailed FE-model of a truss with dowel-type connections leading to models that will be useful for structural engineers. The models also enable further investigations about the parameters of the slotted-in steel plates and dowels connections governing the dynamical response of timber trusses.
Knowledge on the short and long term deformation behavior of highly loaded components in tall timber buildings is important in view of improving future design possibilities with respect to serviceability, both in the construction and in the operational state. In this paper, we present the results of a monitoring case-study on a tall timber-hybrid building in Switzerland, a 15 storey and 60 m high office building completed in 2019. A fibre-optic measuring system showed an increase of the deformation with increasing load during the construction phase of highly stressed spruce-GLT and beech-LVL columns. However, the highest strain values were not reported in the columns themselves but at the ceiling transitions and in the area near their supports. The measurements on the columns were compared with model calculations for long-term deformation of timber elements in order to differentiate single components of the total deformation caused by load, time, and changes in climate during the construction. Over a monitoring period of a year, good agreement of the modelled deformations could be confirmed, which indicates that such models could be well suited for future usage in serviceability design of tall timber buildings.
This paper examines the strength of wood adhesive bonds at high temperatures. The goal of this research is to better understand the conditions of heat delamination in cross laminated timber (CLT) that is exposed to fire. Heat delamination in CLT occurs when one lamination detaches from the composite panel before the char front reaches the bondline. Timber that falls from the panel, as a result of delamination, contributes additional fuel to the fire, which can cause fire regrowth, while the loss of a lamination causes a sudden loss in strength. Currently, to demonstrate that an adhesive does not delaminate, it must pass a full scale (6 m by 3 m) compartment fire test as prescribed in the PRG-320 product standard. In this work, we scaled down the mechanical loads and temperatures to 300 mm lap shear specimens. Seven different adhesives were tested and compared against solid wood controls with the same geometry as the lap shear specimens. Quasi-static tests were run where the specimens were loaded to failure at 25 °C and 260 °C, when the samples were at thermal equilibrium. Additionally, creep tests were performed where the load and temperature ramp was matched to the adhesive bondline temperatures measured in the large scale PRG-320 tests. With the exception of some of the polyurethane formulations, all adhesives passed the scaled-down creep test that resembles the PRG-320 standard. Of the polyurethane adhesives tested, only one formulation remained intact for the duration of the test. These results can be used to help better predict which adhesives may pass the PRG-320 test prior to full scale testing.