Project contact is Daniel Dowden at Michigan Technological University (United States)
Summary
This award will investigate a low-damage solution for cross-laminated timber (CLT) seismic force-resisting systems (SFRSs) using a novel uplift friction damper (UFD) device for seismically resilient mass-timber buildings. The UFD device will embrace the natural rocking wall behavior that is expected in tall CLT buildings, provide stable energy dissipation, and exhibit self-centering characteristics. Structural repair of buildings with these devices is expected to be minimal after a design level earthquake. Although CLT has emerged as a construction material that has revitalized the timber industry, there exists a lack of CLT-specific seismic energy dissipation devices that can integrate holistically with the natural kinematics of CLT-based SFRSs. CLT wall panels themselves do not provide any measurable seismic energy dissipation. As a payload to the large-scale, ten-story CLT building specimen to be tested on the Natural Hazards Engineering Research Infrastructure (NHERI) shake table at the University of California, San Diego, as part of NSF award 1636164, “Collaborative Research: A Resilience-based Seismic Design Methodology for Tall Wood Buildings,” this project will conduct a series of tests with the UFD devices installed on the CLT building specimen. These tests will bridge analytical and numerical models with the high fidelity test data collected with realistic boundary and earthquake loading conditions. The calibrated models will be incorporated in a probabilistic numerical framework to establish a design methodology for seismically resilient tall wood buildings, leading to a more diverse and eco-sustainable urban landscape. This project will provide local elementary school outreach activities, integrate participation of undergraduate minorities and underrepresented groups into the research activities, and foster graduate level curriculum innovations. Project data will be archived and made available publicly in the NSF-supported NHERI Data Depot (https://www.DesignSafe-CI.org). This award contributes to NSF's role in the National Earthquake Hazards Reduction Program (NEHRP).
The research objectives of this payload project are to: 1) bridge the fundamental mechanistic UFD models linking analytical and numerical models necessary for seismic response prediction of seismically resilient CLT-based SFRSs, 2) characterize the fundamental dynamic UFD behavior with validation and calibration through large-scale tests with realistic boundary conditions and earthquake loadings, and 3) integrate low-damage, friction-based damping system alternatives within a resilience-based seismic design methodology for tall wood buildings. To achieve these objectives, the test data collected will provide a critical pathway to reliably establish numerical and analytical models that extend the shake table test results to a broad range of archetype buildings. The seismic performance of mass-timber archetype building systems will be established through collapse risk assessment using incremental dynamic analyses. This will provide a first step in the longer term goal of establishing code-based seismic performance factors for CLT-based SFRSs.
This paper presents a numerical study conducted on a seven-story timber building made of cross-laminated (X-lam) panels, equipped with a linear translational tuned mass damper (TMD). The TMD is placed on the top of the building as a technique for reducing the notoriously high drifts and seismic accelerations of these types of structures. TMD parameters (mass, stiffness, and damping) were designed using a genetic algorithm (GA) technique by optimizing the structural response under seven recorded earthquake ground motions compatible, on average, with a predefined elastic spectrum. Time-history dynamic analyses were carried out on a simplified two-degree-offreedom system equivalent to the multistory building, while a detailed model of the entire building using two-dimensional elastic shell elements and elastic springs for modeling connections was used as a verification of the evaluated solution. Several comparisons between the response of the structure with and without TMD subjected to medium- and high-intensity recorded earthquake ground motions are presented, and the effectiveness and limits of these devices for improving the seismic performance of X-lam buildings are critically evaluated.
The paper presents a numerical study conducted on a seven storey cross-laminated (X-lam) buildings equipped with translational Tuned Mass Dampers (TMD’s), as a technique for reducing the notoriously high drifts and maximum seismic accelerations of these types of structures. The building was modelled in the finite element software package Abaqus using 2D elastic shell elements and non-linear springs, which were implemented as an external user subroutine and properly calibrated to simulate the cyclic behavior of connectors in X-lam buildings. The used TMD device is linear, and placed on the top of the building. Time-history dynamic analyses were carried out under natural earthquake ground motions. Several comparisons between the response of the structure with and without TMD are presented, and the effectiveness and limits of these devices to improve the seismic performance of X-lam buildings are critically discussed.
The low-cycle seismic performance of typical screws used in timber structures is analysed by performing monotonic and fully reversed cyclic bending tests on the threaded length of the shank. Tests considered partially threaded screws made of carbon steel with diameter varying between 6 and 10 mm. Results of the monotonic bending tests are used to assess the compliance of the screws with the requirement of ductility prescribed by EN 14592 and to define the average yielding moment of the shank. Cyclic bending tests are carried out afterwards by assuming three classes of low cycle seismic performance (S1 - low ductility class, S2 - medium ductility class and S3 - high ductility class). Results of the cyclic tests are used to evaluate the residual moment of the shank, which is then compared to the average yielding moment from monotonic tests. The outcomes of the testing programmes highlight that screws with a diameter equal to 6 mm can be assigned to a low-cycle seismic class S2, while screws with a diameter greater than or equal to 8 mm are capable of ensuring a higher seismic performance and can be assigned to a seismic class S3.
This paper discusses the impact of the natural frequency of multi-storey timber structures, focusing on force-based seismic design. Simplified approaches to determine the frequency of light-frame and cross-laminated timber structures are investigated. How stiffness parameters for simple two-dimensional analysis models can be derived from the different contributions of deformation...
Project contact is Thomas Miller at Oregon State University (United States)
Summary
Understanding how roof and floor systems (commonly called diaphragms by engineers) that are built from Pacific Northwest-sourced cross-laminated timber (CLT) panels perform in earthquake prone areas is a critical area of research. These building components are key to transferring normal and extreme event forces into walls and down to the foundation. The tests performed in this project will provide data on commonly used approaches to connecting CLT panels within a floor or roof space and the performance of associated screw fasteners. Structural engineers will directly benefit through improved modeling tools. A broader benefit may be increased confidence in the construction of taller wood buildings in communities at greater risk for earthquakes.
Monotonic and cyclic tests were carried out to determine strength and stiffness characteristics of 2.44 m (8 ft) long shear connections with 8 mm and 10 mm diameter self-tapping screws. The goal of this research is tocompare test values of cross-laminated timber (CLT) diaphragm connections in seismic force-resisting systems tothe design values calculated from formulas in the National Design Specification for Wood Construction (USA)and the Eurocode. Understanding and quantifying the behavior of these shear connections will provide structural engineers with increased confidence in designing these components, especially with regard to the seismic forceresisting systems. Ratios of the experimental yield strength (from the yield point on the load-deflection curve) to factored design strength were in the range of 2.1–6.1. In the ASCE 41-13 acceptance criteria analysis, the mfactors for the Life Safety performance level in cyclic tests ranged from 1.6 to 1.8 for surface spline connections and from 0.9 to 1.7 for cyclic half-lap connections. The half-lap connections with a unique combination of angled and vertical screws performed exceptionally well with both high, linear elastic initial stiffness and ductile, postpeak behavior.
The goal of this project is to contribute to the development of design values for cross-laminated timber (CLT) diaphragms in the seismic load-resisting system for buildings. Monotonic and cyclic tests to determine strength and stiffness characteristics of 2.44 m (8 ft) long shear connections with common self-tapping screws were performed. Understanding and quantifying the behavior of these shear connections will aid in developing design provisions in the National Design Specification for Wood Construction and the International Building Code so structural engineers can use CLT more confidently in lateral force-resisting systems and extend the heights of wood buildings. Experimental strength-to-design strength ratios were in the range of 2.1 to 8.7. In the ASCE 41 acceptance criteria analysis, the m-factors for the Life Safety performance level in cyclic tests ranged from 1.6 to 1.8 for surface spline connections and from 0.9 to 1.7 for cyclic half-lap connections. The half-lap connections, where screws were installed in withdrawal, shear, shear, and withdrawal, performed exceptionally well with both high, linear-elastic, initial stiffness, and ductile, post-peak behavior.
Advanced sustainable lateral load resisting systems that combine ductile and recyclable materials offer a viable solution to resist seismic load effects in environmentally responsible ways. This paper presents the seismic response of a post-tensioned timber-steel hybrid braced frame. This hybrid system combines glulam frame with steel braces to improve lateral stiffness while providing self-centreing capability under seismic loads. The proposed system is first presented. A detailed numerical model of the proposed system is then developed with emphasis on the connections and inelastic response of bracing members. Various types of braced frames including diagonal, cross and chevron configurations are numerically examined to assess the viability of the proposed concept and to confirm the efficiency of the system. A summary of initial findings is presented to demonstrate usefulness of the hybrid system. The results demonstrate that the proposed system increases overall lateral stiffness and ductility while still being able to achieve self-centring. Some additional information on connection details are provided for implementation in practical structures. The braced-frame solution is expected to widen options for lateral load resisting systems for mid-to-high-rise buildings.
Project contact is Chris Pantelides at the University of Utah (United States)
Summary
A mass timber buckling-restrained braced frame is proposed to enhance the seismic resilience of mass timber buildings. Constructed using wood generated from the national forest system, the mass timber buckling-restrained brace will be integrated with a mass timber frame for structural energy dissipation under seismic or wind loads. The team will improve and optimize the design of structural components based on feedback from a real-time health monitoring system. Outcomes include guidelines for a lateral force resisting system of mass timber buildings in high seismic or wind regions.