Skip header and navigation

Refine Results By

267 records – page 1 of 27.

Adaptation of Advanced High R-Factor Bracing Systems into Heavy Timber Frames

https://research.thinkwood.com/en/permalink/catalogue1760
Year of Publication
2016
Topic
Seismic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Gilbert, Colin
Erochko, Jeffrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Mechanical Properties
Keywords
Quasi-Static
Cyclic Testing
Ductility
Damping Devices
R-factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5068-5077
Summary
Timber provides attractive earthquake performance characteristics for regions of high seismic risk, particularly its high strength-to-weight ratio; however, current timber structural systems are associated with relatively low design force reduction factors due to their low inherent ductility when compared to high-performance concrete and steel...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Language
English
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

Advancing Tall Mass Timber Buildings through Seismic Resilience Testing

https://research.thinkwood.com/en/permalink/catalogue2584
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Organization
University of Nevada
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Topic
Seismic
Keywords
Rocking Walls
Shake Table Test
Mass Timber
Non-structural Components and Systems
Research Status
In Progress
Notes
Project contact is Keri Ryan at University of Nevada, Reno
Summary
A landmark shake table test of a 10-story mass timber building will be conducted in late 2020. The test program, funded by other sources, will help accelerate the adoption of economically competitive tall timber buildings by validating the seismic performance of a resilient cross-laminated timber (CLT) rocking wall system. In this project, we leverage and extend the test program by including critical nonstructural components and systems (NCS). Including NCSs, which are most vulnerable to rocking induced deformations of the CLT core, allows investigation of the ramification of this emerging structural type on building resiliency. Quantifying interactions amongst vertically and horizontally spanning NCSs during earthquake shaking will allow designers to develop rational design strategies for future installation of such systems. The expected research outcomes are to expand knowledge of rocking wall system interactions with various NCS, identify NCS vulnerabilities in tall timber buildings, and develop solutions to address these vulnerabilities. Moreover, this effort will greatly increase visibility of the test program. The results of this research will be widely disseminated to timber design and NCS communities through conference presentations, online webinars, and distribution to publicly accessible research repositories. 
Less detail

Alternate Load-Path Analysis for Mid-Rise Mass-Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1233
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Mpidi Bita, Hercend
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2018
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Alternate Load-Path Analysis
Disproportionate Collapse
Lateral Loads
Language
English
Conference
Structures Conference 2018
Research Status
Complete
Notes
April 19–21, 2018, Fort Worth, Texas
Summary
This paper presents an investigation of possible disproportionate collapse for a nine-storey flat-plate timber building, designed for gravity and lateral loads. The alternate load-path analysis method is used to understand the structural response under various removal speeds...
Online Access
Payment Required
Resource Link
Less detail

Ambient and Forced Vibration Testing and Finite Element Model Updating of a Full-Scale Posttensioned Laminated Veneer Lumber Building

https://research.thinkwood.com/en/permalink/catalogue1103
Year of Publication
2012
Topic
Seismic
Wind
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Author
Worth, Margaret
Omenzetter, Piotr
Morris, Hugh
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Wind
Acoustics and Vibration
Keywords
Post-Tensioned
Full Scale
In Situ
Finite Element Model
Dynamic Performance
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 13-15, 2012, Christchurch, New Zealand
Summary
The Nelson Marlborough Institute of Technology Arts and Media building was completed in 2011 and consists of three seismically separate complexes. This research focussed on the Arts building as it showcases the use of coupled post-tensioned timber shear walls. These are part of the innovative Expan system...
Online Access
Free
Resource Link
Less detail

An Analytical Estimation on Seismic Performance of 3 Story Construction with "Sugi" CLT Panels Depending on Connection Properties

https://research.thinkwood.com/en/permalink/catalogue487
Year of Publication
2014
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Miyake, Tatsuya
Matsumoto, Kazuyuki
Tsuchimoto, Takahiro
Isoda, Hiroshi
Kawai, Naohito
Yasumura, Motoi
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Dynamic Properties
Static Properties
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
In this paper, the relations between the load-deformation property of the CLT connections and the seismic performance of the 3 story CLT construction are analytically discussed. The static and the dynamic properties of the CLT connections led each from t...
Online Access
Free
Resource Link
Less detail

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High Rise Project

https://research.thinkwood.com/en/permalink/catalogue1671
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Breneman, Scott
McDonnell, Eric
Zimmerman, Reid
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
US
Diaphragm
Model
High-Rise
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3844-3852
Summary
A candidate CLT diaphragm analysis model approach is presented and evaluated as an engineering design tool motivated by the needs of seismic design in the United States. The modeling approach consists of explicitly modeling CLT panels as discrete orthotropic shell elements with connections between panels and connections from panels to...
Online Access
Free
Resource Link
Less detail

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High-Rise Project

https://research.thinkwood.com/en/permalink/catalogue1710
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors

Application of a Translational Tuned Mass Damper Designed by Means of Genetic Algorithms on a Multistory Cross-Laminated Timber Building 

https://research.thinkwood.com/en/permalink/catalogue413
Year of Publication
2015
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Poh’sié, Guillaume
Chisari, Corrado
Rinaldin, Giovanni
Fragiacomo, Massimo
Amadio, Claudio
Ceccotti, Ario
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Translational Tuned Mass Damper
Dynamic Analysis
Multi-Story
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
This paper presents a numerical study conducted on a seven-story timber building made of cross-laminated (X-lam) panels, equipped with a linear translational tuned mass damper (TMD). The TMD is placed on the top of the building as a technique for reducin...
Online Access
Free
Resource Link
Less detail

267 records – page 1 of 27.