Strength parameters for fasteners determined in accordance with the methods prescribed for the European CE-marking leads to quite different values for seemingly similar products from different manufactures. The results are hardly repeatable, to some extent due to difficulties in selecting representative on engineered wood products...
Timber provides attractive earthquake performance characteristics for regions of high seismic risk, particularly its high strength-to-weight ratio; however, current timber structural systems are associated with relatively low design force reduction factors due to their low inherent ductility when compared to high-performance concrete and steel...
The advantages of the two different building construction materials, timber and concrete, can be used effectively in adhesive-bonded timber-concrete composite constructions. The long-term behavior was investigated experimentally on small-scale...
Project contacts are Frederico França at Mississippi State University and Robert J. Ross at the Forest Products Laboratory
Summary
With the rapid development of CLT manufacturing capacity around the world and the increasing architectural acceptance and adoption, there is a current and pressing need regarding adhesive bond quality assurance in manufacturing. As with other engineered glued composites, adhesive bondline performance is critically important. Bondline assessment requires technology in the form of sensors, ultrasonics, load cells, or other means of reliable machine evaluation.
The objectives of this cooperative study are to develop quality assurance procedures for monitoring the quality of mass timber and CLT during and after manufacturing and to develop assessment techniques for CLT panels in-service.
Airborne sound insulation performance of wall assemblies is a critical aspect which is directly associated with the comfort level of the occupants, which in turn affects the market acceptance. In single-family and low-rise residential buildings, the partition walls, whether loadbearing or non-loadbearing, are commonly framed with studs of solid sawn lumber of 2x4, 2x6, and 2x8. In commercial buildings and multi-storey residential buildings, the partition walls are commonly framed using light-gauge steel studs.
The shortcomings of solid sawn lumber studs form the motivation for this project to develop wood studs that would address these shortcomings to promote greater wood use in partition walls.
The conceptual design and fabrication work and the preliminary test results have shown that are partition-wall stud made out of composite wood material could have the same or better airborne sound insulation performance as compared to the 25 gauge steel stud. The concept is promising, with a manufacturing process and fabrication that would work and be practical.