Skip header and navigation

30 records – page 1 of 3.

Advanced Wood Product Manufacturing Study for Cross-Laminated Timber Acceleration in Oregon & SW Washington, 2017

https://research.thinkwood.com/en/permalink/catalogue715
Year of Publication
2017
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Organization
Oregon BEST
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Market
US
Economic Impact
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Application of Analysis Tools From Newbuilds Research Network in Design of a High-Rise Wood Building

https://research.thinkwood.com/en/permalink/catalogue278
Year of Publication
2015
Topic
Design and Systems
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
NEWBuildS
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
High-Rise
British Columbia Building Code
Mixed-Use
Language
English
Research Status
Complete
Summary
In this project, a conceptual but realistic 20-storey building of hybrid construction incorporating massive timber panels and other structural materials was identified. The project team, consisting of three practicing consultants and 6 graduate student and post-doctoral researchers from NEWBuildS, undertook an analysis and engineering design of the demonstration building. An advisory group that includes FPInnovations scientists, NEWBuildS supervisors of the graduate students and Post Doctoral Fellows, provides technical support to the project team. The performance attributes addressed in the project were structural performance under seismic and wind load, fire resistance and building envelope. . This publication documents the analysis and design of the demonstration building, and identifies technical issues that require further study.
Online Access
Free
Resource Link
Less detail

Assessing the Market Opportunity for Treated Glued Wood Products

https://research.thinkwood.com/en/permalink/catalogue2635
Year of Publication
2010
Topic
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Fell, David
Toosi, B.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Market and Adoption
Keywords
Poles
Sound Abatement Barriers
Market Analysis
Language
English
Research Status
Complete
Summary
In this study market opportunities for treated glue-laminated (glulam) products were investigated in the industrial wood sector. The main benefits of treated glulam are through-product treatment and the ability to manufacture treated products in shapes and sizes that do not fit into common treating chambers. These attributes provide for very durable and large glulam structures that are appropriate for outdoor use. For these reasons bridges, power poles, and sound abatement barriers were investigated. These are markets where wood has lost market share to or is being challenged by concrete and steel substitutes. The vehicular bridge market was once heavy to the use of wood. Today wood accounts for only 7% of the number bridges in the US and less than 0.9% of the actual surface area of bridges in place. In interviewing municipalities in Canada it is clear that wood is not the preferred material with many wood bridges being replaced by concrete. Further, none of the municipalities contacted were planning wood bridges. However, wood bridges are still being installed. In the US 0.9% of the bridges installed by area in 2007 were wood. This is good news as wood is holding its market share. Steering clear of high volume or large bridges, local bridges are well suited for wood as they are plentiful, small in scale, and many are in disrepair. If 20% of local bridges were built with wood in Canada this would have equalled approximately $51 million in wood bridge construction in 2007. Municipalities are much more open to the use of wood for pedestrian bridges and overpasses. Their quick construction and aesthetics are positive attributes in this application. One municipality contacted is planning multiple wood pedestrian bridges in the next five years. However, for the purpose of this market review there is little published information on pedestrian bridges. Noise abatement barriers are a good high-volume technical fit for treated glulam. Increases in traffic and current road infrastructure improvements will lead to more demand for sound abatement in the future. This market is dominated by concrete, but at a very high price. If treated glulam can give adequate durability and sound performance properties it would be approximately 20% cheaper than concrete. The market for sound barriers in Canada could utilize up to 10 mmbf of wood per year to construct 80 km of barrier. This product can also be marketed as a high-performance acoustic fence for residential markets. Treated glulam was also considered for utility poles. It is transmission grade poles where glulam would best fit the market as the demand is for longer poles which are more difficult to get in solid wood. This type of pole is where wood is currently being displaced by tubular steel. If glulam poles were used in 25% of the replacement transmission poles per year this could equal 8 mmbf. Light poles or standards are another market to consider. While this is a relatively low volume market glulam light standards are a premium product in European markets.
Online Access
Free
Resource Link
Less detail

The Case for CLT Manufacturing in Maine

https://research.thinkwood.com/en/permalink/catalogue2382
Year of Publication
2019
Topic
Market and Adoption
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Collection, Storage and Examination of Data for Popularizing CLT

https://research.thinkwood.com/en/permalink/catalogue947
Year of Publication
2014
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)

Construction bois de plus de 8 m de hauteur – Retours d’expériences

https://research.thinkwood.com/en/permalink/catalogue2389
Year of Publication
2020
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
Agence Qualité Construction
Year of Publication
2020
Country of Publication
France
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Language
French
Research Status
Complete
Summary
Le développement de la construction bois, en particulier de moyenne et grande hauteur, est un enjeu clef de la transition environnementale du domaine de la construction. Il doit se faire de façon la plus qualitative possible. Des opérations de construction bois de moyenne et grande hauteur sont déjà menées par des acteurs précurseurs et doivent être envisagées comme des piliers pour préfigurer les développements à venir. Le Rapport REX sur les constructions bois de plus de 8 m de hauteur permet de capitaliser et de valoriser leurs retours d’expériences afin de sensibiliser et de guider l’ensemble des acteurs de la filière aux enjeux de la construction bois. Cette montée en compétences par le partage des points de vigilance et des bonnes pratiques est le gage d’un développement à la hauteur des objectifs de qualité, de performance et de confort visés.
Online Access
Free
Resource Link
Less detail

Enabling Prefabricated Timber Building Systems in Commercial Construction

https://research.thinkwood.com/en/permalink/catalogue1927
Year of Publication
2017
Topic
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Bylund, David
Organization
Centre for Sustainable Architecture in Wood
Publisher
Forest & Wood Products Australia
Year of Publication
2017
Country of Publication
Australia
Format
Report
Material
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Prefabrication
Commercial
NCC
Mid-Rise
Language
English
Research Status
Complete
ISBN
978-1-925213-58-4
Summary
This project identifies drivers for, and barriers to, the increased use of prefabricated timber building (PTB) systems in Class 2 to 9 commercial buildings, such as apartments, hotels, office buildings and schools. PTB systems in Australia are in a formative stage and yet to achieve broad acceptance in the marketplace as a conventional method of building. Opportunities for PTB systems can use timber’s well-established benefits such as high strength-to-weight ratio; design and construction flexibility; general environmental credentials including carbon sequestration; and prefabrication’s suitability for use on brown-field, restricted access and difficult sites and developments. In addition legislative constraints have now been largely removed (e.g. through changes to the 2016 National Construction Code). An increase in large scale mid-rise prefabricated buildings, and with the increasing nationalisation and internationalisation of the top tier building companies, suggests market acceptance will grow as PTB buildings are seen as ‘normal’.
Online Access
Free
Resource Link
Less detail

European Cross-Laminated Timber Market: Industry Trends, Share, Size, Growth, Opportunity and Forecast 2018-2023

https://research.thinkwood.com/en/permalink/catalogue1956
Year of Publication
2018
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
IMARC Group
Publisher
IMARC Services Pvt. Ltd.
Year of Publication
2018
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Europe
Market Potential
Market Share
Costs
Residential
Education
Government
Commercial
Language
English
Research Status
Complete
Summary
The report has segmented the European CLT market on the basis of application. Some of the key application areas of CLT include educational institutes, residential, commercial spaces, and government and public buildings. On a regional basis, the report has segmented the market into Austria, Germany, Italy, Switzerland, Czech Republic, Spain, Norway, Sweden, United Kingdom and Others. Amongst these, Austria represents the largest producer accounting for the majority of the total production. Apart from the application sector and region, the European CLT market has also been segment on the basis of product type, element type, raw material type, bonding method, panel layers, adhesive type, press type, storey class and application type. The report provides historical as well as forecast trends for each of the above market segmentations. The report has also analysed the competitive landscape of the market with some of the key players being Binderholz, Stora Enso, KLH Massivholz, Mayr Melnhof and Hasslacher. ...
Online Access
Payment Required
Resource Link
Less detail

Fire Code Development - A Literature Review of North American and Chinese Fire Regulations Related to Wood Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue358
Year of Publication
2014
Topic
Fire
Market and Adoption
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Dagenais, Christian
Peng, Lei
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Market and Adoption
Keywords
Multi-Storey
North America
China
Fire Safety
Language
English
Research Status
Complete
Summary
Wood frame construction in China is currently limited to 3-storey buildings, mainly due to fire risk perceptions. However, multi-storey (more than 3 storeys) wood frame buildings are gaining popularity around the globe, while providing an acceptable level of performance in...
Online Access
Free
Resource Link
Less detail

Force Modification Factors for Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue363
Year of Publication
2012
Topic
Seismic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Popovski, Marjan
van de Lindt, John
Organization
FPInnovations
Year of Publication
2012
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Market and Adoption
Keywords
Performance-Based Seismic Design
Canada
US
Force Modification Factors
Mid-Rise
Language
English
Research Status
Complete
Summary
European experience shows that Cross-Laminated Timber (CLT) can be competitive in mid-rise and high-rise buildings. Although this system has not been used to the same extent so far in North America, it can be viable wood structural solution for the shift towards sustainable densification of urban and suburban centers. For these reasons FPInnovations has undertaken a multi-disciplinary project on determining the performance of a typical CLT construction, including quantifying the seismic resistance and force modification factors for CLT buildings in Canada and the US. In this report, a performance-based seismic design (PBSD) of a CLT building was conducted and the seismic response of the CLT building was compared to that of a wood-frame structure tested during the NEESWood project. A suitable force modification factors (R-factors) for CLT mid-rise buildings with different fasteners were recommended for seismic design in Canada and the US. The six-storey NEESWood Capstone building was redesigned as a CLT building using the PBSD procedure developed during the NEESWood project. The results from the quasi-static tests on CLT walls performed at FPInnovations were used as input information for modeling of the main load resisting elements of the structure, the CLT walls. Once the satisfactory design of the CLT mid-rise structure was established through PBSD, a force-based design was developed with varying R-factors and that design was compared to the PBSD result. In this way, suitable R-factors were calibrated so that they can yield equivalent seismic performance of the CLT building when designed using the traditional force-based design methods. Based on the results of this study it is recommended that a value of Rd=2.5 and Ro=1.5 can be assigned for structures with symmetrical floor plans according to NBCC. In the US an R=4.5 can be used for symmetrical CLT structures designed according to ASCE7. These values can be assigned provided that the design values for CLT walls considered (and implemented in the material design standards) are similar to the values determined in this study using the kinematics model developed that includes the influence of the hold-downs in the CLT wall resistance. Design of the CLT building with those R-factors using the equivalent static procedures in the US and Canada will result in the CLT building having similar seismic performance to that of the tested wood-frame NEESWood building, which had only minor non-structural damage during a rare earthquake event.
Online Access
Free
Resource Link
Less detail

30 records – page 1 of 3.