Skip header and navigation

Refine Results By

267 records – page 2 of 27.

Assessing the Adhesive Performance in CLT Exposed to Fire

https://research.thinkwood.com/en/permalink/catalogue1945
Year of Publication
2018
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Klippel, Michael
Schmid, Joachim
Fahrni, Reto
Frangi, Andrea
Organization
ETH Zurich
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Connections
Fire
Keywords
Adhesive
Fire Tests
Polyurethane
1C PUR
Melamine Urea Formaldehyde
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
Cross-laminated timber (CLT) became a popular engineered wood product in recent years for highquality and innovative timber buildings. As for any building product, the fire behaviour of CLT panels requires careful evaluation in the design of such buildings. The adhesive used in the bond lines of CLT plays an important role in the fire design. However, currently, European standards do not provide a test method to assess the adhesive performance in CLT exposed to fire. This paper presents a series of fire tests performed with CLT panels glued with different adhesives. It is shown how the mass loss of the CLT panels in standard fire resistance tests can be used to assess the adhesive performance in CLT exposed to fire.
Online Access
Free
Resource Link
Less detail

Assessing the Fire Integrity Performance of Cross-Laminated Timber Floor Panel-To-Panel Joints

https://research.thinkwood.com/en/permalink/catalogue185
Year of Publication
2016
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Dagenais, Christian
Organization
Carleton University
Year of Publication
2016
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Connections
Fire
Keywords
Finite Element Model
Thickness
Codes
Panel-to-Panel
Joints
Canada
US
Fire Resistance
Research Status
Complete
Summary
During the past few years, a relatively new technology has emerged in North America and changed the way professionals design and build wood structures: Cross-laminated Timber (CLT). CLT panels are manufactured in width ranging from 600 mm to 3 m. As such, fastening them together along their major strength axis is required in order to form a singular structural assembly resisting to in-plane and out-of-plane loading. Typical panel-to-panel joint details of CLT assemblies may consist of internal spline(s), single or double surface splines or half-lapped joints. These tightly fitted joint profiles should provide sufficient fire-resistance, but have yet to be properly evaluated for fire-resistance in CLT assemblies. The experimental portion of the study consisted at conducting ten (10) intermediate-scale fire-resistance tests of CLT floor assemblies with four (4) types of panel-to-panel joints and three (3) CLT thicknesses. The data generated from the intermediate-scale fire tests were used to validate a finite element heat transfer model, a coupled thermal-structural model and a simplified design model. The latter is an easy-to-use design procedure for evaluating the fire integrity resistance of the four commonly-used CLT floor assemblies and could potentially be implemented into building codes and design standards. Based on the test data and models developed in this study, joint coefficient values were derived for the four (4) types of CLT panel-to-panel joint details. Joint coefficients are required when assessing the fire integrity of joints using simple design models, such as the one presented herein and inspired from Eurocode 5: Part 1-2. The contribution of this study is to increase the knowledge of CLT exposed to fire and to facilitate its use in Canada and US by complementing current fire-resistance design methodologies of CLT assemblies, namely with respect to the fire integrity criterion. Being used as floor and wall assemblies, designers should be capable to accurately verify both the load-bearing and separating functions of CLT assemblies in accordance with fire-related provisions of the building codes, which are now feasible based on the findings of this study.
Online Access
Free
Resource Link
Less detail

Assessing The Flammability of Mass Timber Components: A Review

https://research.thinkwood.com/en/permalink/catalogue87
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Mehaffey, Jim
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
National Building Code of Canada
Flame Spread
Model
Cone Calorimeter Testing
Buildings
Research Status
Complete
Summary
This report begins with a discussion of the mechanisms of flame spread over combustible materials while describing the NBCC prescriptive solutions that establish the acceptable fire performance of interior finish materials. It is noted that while flame spread ratings do give an indication of the fire performance of products in building fires, the data generated are not useful as input to fire models that predict fire growth in buildings. The cone calorimeter test is then described in some detail. Basic data generated in the cone calorimeter on the time to ignition and heat release rates are shown to be fundamental properties of wood products which can be useful as input to fire models for predicting fire growth in buildings. The report concludes with the recommendation that it would be useful to run an extensive set of cone calorimeter tests on SCL, glue-laminated timber and CLT products. The fundamental data could be most useful for validating models for predicting flame spread ratings of massive timber products and useful as input to comprehensive computer fire models that predict the course of fire in buildings. It is also argued that the cone calorimeter would be a useful tool in assessing fire performance during product development and for quality control purposes.
Online Access
Free
Resource Link
Less detail

Auto-Extinction of Engineered Timber as a Design Methodology

https://research.thinkwood.com/en/permalink/catalogue1676
Year of Publication
2016
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Bartlett, Alastair
Hadden, Rory
Bisby, Luke
Lane, Barbara
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Extinction
Fire Propagation Apparatus
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3934-3941
Summary
Engineered timber products such as cross-laminated timber (CLT) are gaining popularity with designers due to attractive aesthetic, sustainability, and constructability credentials. The fire behaviour of such materials is a key requirement for buildings formed predominantly of exposed, structural timber elements. Whilst design guidance focuses on the residual structural capacity of timber elements exposed to a ‘standard fire’, the fundamental characteristics of CLT’s performance in fire, such as ignition, flame spread, delamination, and extinction are not currently considered. This paper focuses on the issues relating to increased fuel load due to a combustible building material itself. Whilst an increasingly common protection solution to this conundrum is to fully encapsulate the timber elements, there is limited supporting test data on this approach. Through understanding these concepts from a fundamental, scientific perspective, the behaviour can be properly understood, and, rather than limiting design, can be incorporated into design to satisfy suitable performance criteria. In this paper therefore, the concept of auto-extinction – a phenomenon by which a timber sample will cease flaming when the net heat flux to the sample drops below a critical value – is explored experimentally and related to firepoint theory. A series of c.100 small scale tests in a Fire Propagation Apparatus (FPA) have been carried out to quantify the conditions under which flaming extinction occurs. Critical mass loss rate at extinction is shown to occur at a mass flux of 3.5g/m2s or a temperature gradient of 28K/mm at the charline. External heat flux and airflow were not found to affect the critical mass loss rate at the range tested. This approach is then compared with a compartment fire with multiple exposed timber surfaces. With further testing and refinement, this method may be applied in design, enabling architects’ visions of exposed, structural timber to be safely realised.
Online Access
Free
Resource Link
Less detail

Behavior of cross-laminated timber panels during and after an ISO-fire: An experimental analysis

https://research.thinkwood.com/en/permalink/catalogue3343
Year of Publication
2023
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Vairo, Maurizio
Silva, Valdir Pignatta
Icimoto, Felipe Hideyoshi
Organization
University of Sao Paulo
Publisher
Elsevier
Year of Publication
2023
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Charring
ISO-fire
Post-fire Stiffness Reduction
Cooling Phase
Finite Element Analysis
Research Status
Complete
Series
Results in Engineering
Summary
Cross-laminated timber has been used in buildings since the 1990s. In the last years, there has been a growing interest in the use of this technology, especially with the adoption of the product in increasingly taller buildings. Considering that the product is manufactured from a combustible material, wood, authorities that regulate the fire safety in buildings and the scientific community have carried out numerous research and fire tests, aiming to elaborate codes which contemplate the use of cross-laminated timber in tall buildings. This paper discusses the main results obtained from the fire resistance test of a cross-laminated timber slab carried out in the horizontal gas furnace (3.0 m × 4.0 m x 1.5 m) from the University of Sao Paulo. A vertical load of 3 kN/m2 was applied over the slab and the specimens were exposed to the standard fire curve for 30 min. In addition to the 30-min test, the research also evaluated the thermal behavior of the samples during the 24 h after the burners were turned off. Throughout the test, the slab maintained the integrity and the thermal insulation, and no falling-off of the charred layer was observed. However, the 24-h test indicated that it is mandatory to consider the loss of stiffness and strength of timber caused by the thermal wave observed during the decay phase.
Online Access
Free
Resource Link
Less detail

Behaviours of Larch Glued Laminated Timber Beams Exposed to Standard Fire Heating During the Cooling Phase Study on Fire Performance of Structural Glued Laminated Timber Beams Part 1

https://research.thinkwood.com/en/permalink/catalogue1112
Year of Publication
2015
Topic
Fire
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Kanjo, Hinjin
Hidemasa, Yusa
Horio, Takehito
Hirashima, Takeo
Takumi, Matsumoto
Saito, Kiyoshi
Publisher
J-STAGE
Year of Publication
2015
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Fire
Keywords
Larch
Load Bearing Capacity
Charring Rate
Cooling
Research Status
Complete
Series
Architectural Institute of Japan Structural System
Summary
Timber elements, which are different from other structural elements, have a characteristic problem in that the load bearing capacity decreases due to self-burning in the case of a fire, and this self-burning may continue after other fuel in the room has been exhausted. Therefore, the structural fire performance of timber elements should be clarified during not only the heating phase, but also the cooling phase. However, in examining the load bearing capacity of timber elements in a fire, few studies have considered the cooling phase. In the present paper, the fire performance of glued, laminated timber beams is discussed based on load-bearing fire tests that take the cooling phase into consideration.
Online Access
Free
Resource Link
Less detail

BIM-Based Code Compliance Checking for Fire Safety in Timber Buildings: A Comparison of Existing Tools

https://research.thinkwood.com/en/permalink/catalogue2110
Year of Publication
2019
Topic
Design and Systems
Fire
Application
Wood Building Systems
Author
Kincelova, Kristina
Boton, Conrad
Blanchet, Pierre
Dagenais, Christian
Year of Publication
2019
Format
Conference Paper
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
BIM
Fire Safety
NBCC
Conference
Canadian Society for Civil Engineering
Research Status
Complete
Summary
The nature and the complexity of building codes, including the fire regulations, result in mainly manual verification and, therefore, in subjective potential interpretations or errors. In the case of timber construction, the fire safety regulations are moreover a challenge due to the combustibility of the material. Further integration of fire safety is needed during the design process in order to increase the reliability of the designs in terms of fire safety. Building information modelling (BIM) technologies offer today new tools for automating different tasks in the construction process. The different approaches and available tools have been therefore compared in the context of fire protection code compliance. For that matter, criteria applicable to the tools have been identified based on literature review and on the National Building Code of Canada prescriptive provisions, but also based on a practical manipulation of the available tools. The potential of the different tools is therefore assessed based on their integration of the fire protection concepts and on their adaptability to BIM. This contextualized comparison has shown that the fire protection integration in BIM is limited. The tools for performance-based fire protection design are not exploring enough the information contained by the building model that is beyond the geometry. The BIM-based compliance checking tools, in turn, contain insufficient space for fire safety regulations checking as advanced spatial study is required for this purpose. Thus, this paper demonstrates the need for further development in terms of exploiting the building models’ semantics in the fire protection context.
Online Access
Free
Resource Link
Less detail

Building Envelope Summary: Hygrothermal Assessment of Systems for Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue250
Year of Publication
2014
Topic
Design and Systems
Fire
Moisture
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Abdulghani, Khaled
Cornick, Steve
Di Lenardo, Bruno
Ganapathy, Gnanamurugan
Lacasse, Michael
Maref, Wahid
Moore, Travis
Mukhopadhyaya, Phalguni
Nicholls, Mike
Saber, Hamed
Swinton, Michael
van Reenen, David
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Moisture
Keywords
National Building Code of Canada
Mid-Rise
Building Envelopes
Research Status
Complete
Summary
The role of the building envelope research team in this project was to assess whether midrise wood-frame (LWF) and cross-laminated timber (CLT) building envelope solutions developed by the fire research team to meet the fire provisions of the National Building Code (NBC) 2010 Part 3 Fire Protection, would also meet the NBC Part 5 Environmental Separation requirements relating to the protection of the building envelope from excessive moisture and water accumulation. As well, these wood-based mid-rise envelope solutions were to be assessed for their ability to meet Part 3 Building Envelope of the National Energy Code for Buildings (NECB) 2011. Requirements relating to heat, air, moisture, and precipitation (HAMP) control by the building envelope are included in Part 5 Environmental Separation of the NBC 2010. Part 5 addresses all building types and occupancies referred to in Part 3, but unlike requirements for fire protection, this section of the code was written more recently and is generic, including requirements that are more objective-oriented rather than prescriptive requirements pegged to specific constructions systems. The investigated methodologies developed and adapted for this study took those code characteristics into account.
Online Access
Free
Resource Link
Less detail

Calculating structural fire resistance of wood-frame assemblies

https://research.thinkwood.com/en/permalink/catalogue3200
Year of Publication
2022
Topic
Fire
Application
Floors
Walls
Author
Dagenais, Christian
Chorlton, Bronwyn
Chen, Zhiyong
Organization
FPInnovations
Year of Publication
2022
Application
Floors
Walls
Topic
Fire
Keywords
Small Cross Section
Light Wood Frame
Research Status
Complete
Series
InfoNote
Summary
This InfoNote summarizes the verification and validation that the current design requirements of Annex B of CSA O86 can also be applied to small framing members used in unprotected and protected lightweight wood-frame assemblies, e.g., walls and floors. With minor editorial changes, the scope of application of Annex B of CSA O86 could include all wood and wood-based products listed in CSA O86, regardless of their original and residual dimensions.
Online Access
Free
Resource Link
Less detail

Calculating the Fire Resistance of Wood Members and Assemblies: Technical Report No. 10

https://research.thinkwood.com/en/permalink/catalogue2492
Year of Publication
2020
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Columns
Beams
Floors
Walls
Wood Building Systems
Decking

267 records – page 2 of 27.