Use of structural composite lumber products is increasing. In applications requiring a fire resistance rating, calculation procedures are used to obtain the fire resistance rating of exposed structural wood products. A critical factor in the calculation procedures is char rate for ASTM E 119 fire exposure. In this study, we tested 14 structural composite lumber products to determine char rate when subjected to the fire exposure of the standard fire resistance test. Char rate tests on 10 of the composite lumber products were also conducted in an intermediate-scale horizontal furnace. The National Design Specification/Technical Report 10 design procedure for calculating fire resistance ratings of exposed wood members can be used to predict failure times for members loaded in tension. Thirteen tests were conducted in which composite lumber products were loaded in tension as they were subjected to the standard fire exposure of ASTM E 119. Charring rates, observed failure times in tension tests, and deviations from predicted failure times of the structural composite lumber products were within expected range of results for sawn lumber and glued laminated timbers.
January 26-28, 2009, San Francisco, California, USA
Summary
Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National Design Specifications (NDS) Method. There is no widely accepted methodology in the United States to determine the fire-resistance rating of an individual structural wood element with the protective membrane directly applied to the exposed surfaces of the element. In these tests, we directly applied one or two layers of 16-mm thick fire-rated gypsum board or 13-mm thick southern pine plywood for the protective membrane to the wood element. The wood elements were Douglas-fir laminated veneer lumber (LVL) specimens and Douglas-fir gluedlaminated specimens that had previously been tested without any protective membrane. The methodology for the tension testing in the horizontal furnace was the same used in the earlier tests. The fire exposure was ASTM E 119. For the seven single-layer gypsum board specimens, the improvements ranged from 25 to 40 min. with an average value of 33 min. For the three double-layer specimens, the improvement in times ranged from 64 to 79 min. with an average value of 72 min. We concluded that times of 30 min. for a single layer of 16-mm Type X gypsum board and at least 60 min. for a double layer of 16-mm Type X gypsum board can be added to the fire rating of an unprotected structural wood element to obtain the rating of the protected element.
There is growing interest from the Canadian wood products industry to produce and use cross-laminated timber (CLT) panels in construction. Because this is a new product in North America, there is a need to demonstrate that the product meets various performance attributes such as structural resistance, sound transmission and fire resistance.
This research aims to address two primary objectives which will support the North American adoption of CLT. First, a generic calculation method for determining the fire-resistance of CLT assemblies is needed to enable producers to manufacture a number of different configurations of panels without the need to run a large number of full-scale fire tests. Second, the CLT assemblies chosen for testing have been identified as the most likely configurations to be used thereby providing test data to support the claims of fire-resistance to help satisfy the authority having jurisdiction.
This paper describes a series of three full-scale furnace tests on post-tensioned LVL box beams loaded with vertical loads, and presents a proposed fire design method for post-tensioned timber members. The design method is adapted from the calculation methods given in Eurocode 5 and NZS:3603 which includes the effects of changing geometry and several failure mechanisms specific to post-tensioned timber. The design procedures include an estimation of the heating of the tendons within the timber cavities, and relaxation of post-tensioning forces. Additionally, comparisons of the designs and assumptions used in the proposed fire design method and the results of the full-scale furnace tests are made. The experimental investigation and development of a design method have shown several areas which need to be addressed. It is important to calculate shear stresses in the timber section, as shear is much more likely to govern compared to solid timber. The investigation has shown that whilst tensile failures are less likely to govern the fire design of post-tensioned timber members, due to the axial compression of the post-tensioning, tensile stresses must still be calculated due to the changing centroid of the members as the fire progresses. Research has also highlighted the importance of monitoring additional deflections and moments caused by the high level of axial loads.
This research investigates the fire behaviour of laminated veneer lumber elements and cross-laminated timber panels. The study focused on some research questions regarding the fire resistance of unprotected and protected timber structural elements, the possibility to predict accurately the fire behaviour of timber elements through numerical modelling, and the accuracy of analytical estimations of fire resistance using simplified design methods.
Experimental tests of small and large specimens exposed to fire on one or more sides and subjected to different types and levels of load were performed. The results highlight the good performance of timber structural elements in fire conditions. The collected data were used to validate two- and three-dimensional models implemented in the general purpose finite element code Abaqus. Thermal and mechanical analyses were carried out to estimate the temperature distribution within unprotected and protected cross-sections of different sizes, the fire resistance and the displacement of timber elements loaded in-plane and out-of-plane. Further, parametric studies assuming different timber properties-temperature relationships were also performed. The proposed numerical modelling can be used to investigate the fire behaviour of timber members made of other wood-based products and subjected to different loads and fire conditions.
Experimental and numerical results were compared with analytical predictions obtained by using simplified design methods proposed by current codes of practice and recent research proposals. Numerical and analytical methods provide overall acceptable estimations of fire behaviour of timber members, especially considering the high variability that characterizes the wood material and the experimental tests, in particular the fire tests.
The focus of this research was to investigate the fire performance of post-tensioned timber beams. This was completed through a series of full-scale furnace tests, and the development of a fire resistance design method. Previous research has focused on the seismic performance and gravity frame performance of post-tensioned timber, both of which yielded promising results. There is however a commonly perceived increase in fire risk with timber building, particularly multi-storey timber buildings, and the fire performance of post-tensioned timber had not previously been investigated.
This paper describes numerical modelling to predict the fire resistance of engineered timber floor systems. The floor systems under investigation are timber composite floors (various timber joist and box floor cross sections), and timber-concrete composite floors. The paper describes 3D numerical modelling of the floor systems using finite element software, carried out as a sequential thermo-mechanical analysis. Experimental testing of these floor assemblies is also being undertaken to calibrate and validate the models, with a number of full scale tests to determine the failure mechanisms for each floor type and assess fire damage to the respective system components. The final outcome of this research will be simplified design methods for calculating the fire resistance of a wide range of engineered timber floor systems.
This paper describes a series of full-scale furnace tests on loaded post tensioned LVL beams. Each beam was designed to exhibit a specific failure mechanism when exposed to the standard ISO834 fire. In addition to the beams a number of steel anchorage protection schemes were also investigated. These included wrapping the ends in kaowool, using intumescent paint, covering the anchorage with fire rated plasterboard and covering the anchorage with timber (LVL). The results of the full-scale tests cover temperature distributions through the timber members during the tests, the temperatures reached within the cavity and those of the tendons suspended within the cavity, the relaxation of the tendons during the test, the failure mechanisms experienced, and a summary of the anchorage protection details and their effectiveness. Recommendations for the design of both post-tensioned timber beams and associated anchorages are also provided.
During this MSc thesis it has been carried out an extensive literature review on fire safety engineering, on timber behaviour on fire and on fire safety regulations in different countries. A preliminary design for a high rise cross laminated timber building (CLT) has been carried out in order to obtain a minimum thickness of the structural elements needed for the load bearing structure. This thickness has been verified according to prescriptive fire regulations. Furthermore, fire safety analyses have been performed to evaluate a more realistic fire behaviour of exposed timber structures. The finite element program SAFIR and the fire model OZone have been used in the advance calculations. Finally, it is shown that timber buildings should be designed according to advance fire safety approach and suggestions are given for developing a timber fire model.
FPInnovations is involved in a large research project regarding CLT construction. One objective of this research is the creation of a design methodology for calculating the fire-resistance of CLT assemblies/construction. This methodology will foster the design of fire-safe buildings of wood or hybrid construction. In order to establish such calculation methods, a series of experimental tests has been undertaken. A total of eight full-scale CLT fire resistance tests have been conducted at the NRC fire laboratory where the panels were subject to the standard ULC S101 [1] fire exposure. The series consisted of three wall and five floor tests. Each test was unique using panels with a different number of plies and varying thicknesses. Some of the assemblies were protected using CGC Sheetrock® FireCode® Core Type X gypsum board while others were left unprotected.