Skip header and navigation

68 records – page 1 of 7.

Advanced Industrialized Construction to Achieve High Building Energy Efficiency

https://research.thinkwood.com/en/permalink/catalogue2828
Year of Publication
2021
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Building Envelope
Topic
Energy Performance
Keywords
Prefabrication
Offsite Construction
Energy Efficiency
Retrofit
New Construction
Mid-Rise
Language
English
Research Status
Complete
Series
InfoNote
Summary
Advanced industrialized construction methods enable complex building components and systems to be built with high precision and quality. This manufacturing technique has an advantage to provide cost-competitive and high energy efficient building components and systems for both retrofits and new construction. This document gives an overview of the use of prefabricated panels in building Net Zero Energy Ready wood-frame multi-unit residential buildings (MURBs) in Edmonton.
Online Access
Free
Resource Link
Less detail

Airtightness and Air Leakage Causes of Wooden Houses in Korea

https://research.thinkwood.com/en/permalink/catalogue1643
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Kim, Se-Jong
Chang, Yoon-Seong
Park, Joo-Saeng
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Korea
Airtightness
Air Leakage
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3367-3372
Summary
The airtightness of building must be measured for the evaluation of building energy performance. To make up the reference airtightness value of wooden houses built in Korea, blower door test was carried out in the 36 houses. And, during the test, the causes of air leakage were inspected simultaneously. The result showed that the average of ACH50((air change per hour at air pressure difference 50Pa) measured from light timber frame houses was 3.5 h-1 and the post-beam construction was 5.1h-1. And, insulation with form of foams was advantageous in ensuring building airtightness than glass fiber batt. And, values below 1.5 h-1 of ACH50, threshold for application of artificial air change equipment, had appeared after 2010s. Also, the values varied according to who managed the building construction field. Although only one measurement of CLT(cross laminated timber) residential building could be obtained in 2016, the result showed good airtightness of building with 0.7 h-1.
Online Access
Free
Resource Link
Less detail

Analysis of the Characteristics of External Walls of Wooden Prefab Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2694
Year of Publication
2020
Topic
Energy Performance
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Švajlenka, Jozef
Kozlovská, Mária
Badida, Miroslav
Moravec, Marek
Dzuro, Tibor
Vranay, František
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Energy Performance
Acoustics and Vibration
Keywords
Acoustic Properties
Thermal Properties
Prefabrication
Language
English
Research Status
Complete
Series
Energies
Summary
A balanced combination of heat flows creates suitable conditions for thermal comfort—a factor contributing to the quality of the internal environment of buildings. The presented analysis of selected thermal-technical parameters is up-to-date and suitable for verifying the parameters of building constructions. The research also applied a methodology for examining the acoustic parameters of structural parts of buildings in laboratory conditions. In this research, selected variant solutions of perimeter walls based on prefab cross laminated timber were investigated in terms of acoustic and thermal-technical properties. The variants structures were investigated in laboratory but also in model conditions. The results of the analyses show significant differences between the theoretical or declared parameters and the values measured in laboratory conditions. The deviations of experimental measurements from the calculated or declared parameters were not as significant for variant B as they were for variant A. These findings show that for these analyzed sandwich structures based on wood, it is not always possible to reliably declare calculated values of thermal-technical and acoustic parameters. It is necessary to thoroughly examine such design variants, which would contribute to the knowledge in this field of research of construction systems based on wood.
Online Access
Free
Resource Link
Less detail

An Application of the CEN/TC350 Standards to an Energy and Carbon LCA of Timber Used in Construction, and the Effect of End-of-Life Scenarios

https://research.thinkwood.com/en/permalink/catalogue2376
Year of Publication
2013
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Symons, Katie
Moncaster, Alice
Symons, Digby
Year of Publication
2013
Country of Publication
United Kingdom
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Embodied Carbon
Life-Cycle Assessment
Built Environment
End of Life
LCA
Europe
Language
English
Conference
Australian Life Cycle Assessment Society conference
Research Status
Complete
Summary
The use of timber construction products and their environmental impacts is growing in Europe. This paper examines the LCA approach adopted in the European CEN/TC350 standards, which are expected to improve the comparability and availability of Environmental Product Declarations (EPDs). The embodied energy and carbon (EE and EC) of timber products is discussed quantitatively, with a case study of the Forte building illustrating the significance of End-of-Life (EoL) impacts. The relative importance of timber in the context of all construction materials is analysed using a new LCA tool, Butterfly. The tool calculates EE and EC at each life cycle stage, and results show that timber products are likely to account for the bulk of the EoL impacts for a typical UK domestic building.
Online Access
Free
Resource Link
Less detail

An Overview on Retrofit for Improving Building Energy Efficiency

https://research.thinkwood.com/en/permalink/catalogue365
Year of Publication
2015
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Wang, Jieying
Ranger, Lindsay
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Concrete
Energy Consumption
Envelope
Retrofit
Single Family Houses
Steel
Language
English
Research Status
Complete
Summary
This literature review aims to provide a general picture of retrofit needs, markets, and commonly used strategies and measures to reduce building energy consumption, and is primarily focused on energy retrofit of the building envelope. Improving airtightness and thermal performance are the two key aspects for improving energy performance of the building envelope and subsequently reducing the energy required for space heating or cooling. This report focuses on the retrofit of single family houses and wood-frame buildings and covers potential use of wood-based systems in retrofitting the building envelope of concrete and steel buildings. Air sealing is typically the first step and also one of the most cost-effective measures to improving energy performance of the building envelope. Airtightness can be achieved through sealing gaps in the existing air barrier, such as polyethylene or drywall, depending on the air barrier approach; or often more effectively, through installing a new air barrier, such as an airtight exterior sheathing membrane or continuous exterior insulation during retrofit. Interface detailing is always important to achieve continuity and effectiveness of an air barrier. For an airtight building, mechanical ventilation is needed to ensure good indoor air quality and heat recovery ventilators are typically required for an energy efficient building. Improving thermal resistance of the building envelope is the other key strategy to improve building energy efficiency during retrofit. This can be achieved by: 1. blowing or injecting insulation into an existing wall or a roof; 2. building extra framing, for example, by creating double-stud exterior walls to accommodate more thermal insulation; or, 3. by installing continuous insulation, typically on the exterior. Adding exterior insulation is a major solution to improving thermal performance of the building envelope, particularly for large buildings. When highly insulated building envelope assemblies are built, more attention is required to ensure good moisture performance. An increased level of thermal insulation generally increases moisture risk due to increased vapour condensation potential but reduced drying ability. Adding exterior insulation can make exterior structural components warmer and consequently reduce vapour condensation risk in a heating climate. However, the vapour permeance of exterior insulation may also affect the drying ability and should be taken into account in design. Overall energy retrofit remains a tremendous potential market since the majority of existing buildings were built prior to implementation of any energy requirement and have large room available for improving energy performance. However, significant barriers exist, mostly associated with retrofit cost. Improving energy performance of the building envelope typically has a long payback time depending on the building, climate, target performance, and measures taken. Use of wood-based products during energy retrofit also needs to be further identified and developed.
Online Access
Free
Resource Link
Less detail

Artificial Neural Network for Assessment of Energy Consumption and Cost for Cross Laminated Timber Office Building in Severe Cold Regions

https://research.thinkwood.com/en/permalink/catalogue1206
Year of Publication
2018
Topic
Energy Performance
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dong, Qi
Xing, Kai
Zhang, Hongrui
Publisher
MDPI
Year of Publication
2018
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Cost
Keywords
Energy Consumption
Office Buildings
Severe Cold Regions
Artificial Neural Network
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Summary
This paper aims to develop an artificial neural network (ANN) to predict the energy consumption and cost of cross laminated timber (CLT) office buildings in severe cold regions during the early stage of architectural design. Eleven variables were selected as input variables including building form and construction variables, and the values of input variables were determined by local building standards and surveys. ANNs were trained by the simulation data and Latin hypercube sampling (LHS) method was used to select training datasets for the ANN training. The best ANN was obtained by analyzing the output variables and the number of hidden layer neurons. The results showed that the ANN with multiple outputs presented better prediction performance than the ANN with single output. Moreover, the number of hidden layer neurons in ANN should be greater than five and preferably 10, and the best mean square error (MSE) value was 1.957 × 103. In addition, it was found that the time of predicting building energy consumption and cost by ANN was 80% shorter than that of traditional building energy consumption simulation and cost calculation method
Online Access
Free
Resource Link
Less detail

Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach

https://research.thinkwood.com/en/permalink/catalogue1209
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Liu, Ying
Guo, Haibo
Sun, Cheng
Chang, Wen-Shao
Publisher
MDPI
Year of Publication
2016
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Life-Cycle Assessment
Cradle-to-Grave
China
Cold Regions
Severe Cold Regions
Energy Consumption
Mid-Rise
Residential
Language
English
Research Status
Complete
Series
Sustainability
Summary
Timber building has gained more and more attention worldwide due to it being a generic renewable material and having low environmental impact. It is widely accepted that the use of timber may be able to reduce the embodied energy of a building. However, the development of timber buildings in China is not as rapid as in some other countries. This may be because of the limitations of building regulations and technological development. Several new policies have been or are being implemented in China in order to encourage the use of timber in building construction and this could lead to a revolutionary change in the building industry in China. This paper is the first one to examine the feasibility of using Cross Laminated Timber (CLT) as an alternative solution to concrete by means of a cradle-to-grave life-cycle assessment in China. A seven-storey reference concrete building in Xi’an was selected as a case study in comparison with a redesigned CLT building. Two cities in China, in cold and severe cold regions (Xi’an and Harbin), were selected for this research. The assessment includes three different stages of the life span of a building: materialisation, operation, and end-of-life. The inventory data used in the materialisation stage was mostly local, in order to ensure that the assessment appropriately reflects the situation in China. Energy consumption in the operation stage was obtained from simulation by commercialised software IESTM, and different scenarios for recycling of timber material in the end-of-life are discussed in this paper. The results from this paper show that using CLT to replace conventional carbon intensive material would reduce energy consumption by more than 30% and reduce CO2 emission by more than 40% in both cities. This paper supports, and has shown the potential of, CLT being used in cold regions with proper detailing to minimise environmental impact.
Online Access
Free
Resource Link
Less detail

Assessment of Energy Saving Potential by Replacing Conventional Materials by Cross Laminated Timber (CLT)—A Case Study of Office Buildings in China

https://research.thinkwood.com/en/permalink/catalogue2010
Year of Publication
2019
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dong, Yu
Cui, Xue
Yin, Xunzhi
Chen, Yang
Guo, Haibo
Publisher
MDPI
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
China
Energy Consumption
Office Buildings
Language
English
Research Status
Complete
Series
Applied Sciences
ISSN
2076-3417
Online Access
Free
Resource Link
Less detail

Can Mass-Timber Construction Materials Provide Effective Thermal Capacitance in New Homes?

https://research.thinkwood.com/en/permalink/catalogue241
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Application
Wood Building Systems
Author
Dewsbury, Mark
Geard, Detlev
Fay, Roger
Organization
International Building Performance Simulation Association
Year of Publication
2012
Country of Publication
China
Format
Conference Paper
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Australia
Building Code
Building Code of Australia
Carbon
Climate Change
Codes
Embodied Energy
Mass Timber
Thermal
Language
English
Conference
ASim 2012
Research Status
Complete
Notes
November 25-27, 2012, Shanghai, China
Summary
There has been no research to date exploring whether timber products can provide effective thermal capacitance in residential or commercial construction. This research is exploring the use of unique mass-timber products to provide a new form of thermal performance capacitance within the built fabric of new and existing homes. The development of mass timber products is a new paradigm in material and building science research in Australia, requiring the accounting for carbon emissions, carbon sequestration, material embodied energy and material thermal properties for this renewable resource. This paper focuses on the results from preliminary building simulation studies encompassing house energy rating simulations and a comparative analysis of embodied energy and carbon storage for a series of house plans in Australia.
Online Access
Free
Resource Link
Less detail

Characterizing and Quantifying Environmental and Economic Benefits of Cross Laminated Timber Buildings across the U.S.

https://research.thinkwood.com/en/permalink/catalogue2564
Topic
Cost
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Colorado School of Mines
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Cost
Energy Performance
Keywords
Numerical Analysis
Whole Building Energy Model
Building Envelope
Monitoring
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Paulo Tabares at the Colorado School of Mines
Summary
Cross Laminated Timber (CLT) is a mass timber material that has the potential to expand the wood building market in the U.S. However, new sustainable building technologies need extensive field and numerical validation quantifying environmental and economic benefits of using CLT as a sustainable building material so it can be broadly adopted in the building community. These benefits will also be projected nationwide across the United States once state-of-the-art software is validated and will include showcasing and documenting synergies between multiple technologies in the building envelope and heating, ventilation and air conditioning (HVAC) systems. However, there are no such studies for CLT. The objective of this project is to quantify and showcase environmental and economic benefits of CLT as a sustainable building material in actual (and simulated) commercial buildings across the entire United States by doing: (1) on-site monitoring of at least four CLT buildings, (2) whole building energy model validation, (3) optimization of the performance and design for CLT buildings and (4) comparison with traditional building envelopes. This knowledge gap needs to be filled to position CLT on competitive grounds with steel and concrete and is the motivation for this study.
Less detail

68 records – page 1 of 7.