Skip header and navigation

Refine Results By

224 records – page 1 of 12.

Performance of midply shear wall

https://research.thinkwood.com/en/permalink/catalogue3037
Year of Publication
2022
Topic
Mechanical Properties
Fire
Acoustics and Vibration
Application
Shear Walls
Author
Ni, Chui
Dagenais, Christian
Qian, Cheng
Hu, Lin
Organization
FPInnovations
Year of Publication
2022
Format
Report
Application
Shear Walls
Topic
Mechanical Properties
Fire
Acoustics and Vibration
Keywords
Midply Shear Wall
Structural Performance
Fire Performance
Acoustic Performance
Research Status
Complete
Summary
Midply shear wall, which was originally developed by researchers at Forintek Canada Corp. (predecessor of FPInnovations) and the University of British Columbia, is a high-capacity wood-frame shear wall system that is suitable for high wind and seismic loadings. Its superior seismic performance was demonstrated in a full-scale earthquake simulation test of a 6-storey wood-frame building in Japan (Peietal.,2010). Midply shear wall, however, had limited applications due to its low resistance to vertical load and difficulty to accommodate electrical and plumbing services. For broader applications of Midply shearwall, these limitations needed to be addressed. In collaboration with APA–The Engineered Wood Association and the American Wood Council (AWC), a new framing arrangement was designed to increase the vertical load resistance of Midply shearwalls and make it easier to accommodate electrical and plumbing services. Consequently, structural, fire and acoustic tests have been conducted to evaluate various performance attributes of Midply shear wall with the new framing configuration. This InfoNote provides a summary of the structural, fire and acoustic performance of Midply shearwalls from the tests.
Online Access
Free
Resource Link
Less detail

Contemporary and Novel Hold-Down Solutions for Mass Timber Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2941
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Tannert, Thomas
Loss, Cristiano
Organization
University of Northern British Columbia
University of British Columbia
Editor
Tullini, Nerio
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
Self-Tapping Screws
Internal-Perforated Steel Plates
Hyperelastic Bearing Pads
Proprietary Connections
Research Status
Complete
Series
Buildings
Summary
‘Mass timber’ engineered wood products in general, and cross-laminated timber in particular, are gaining popularity in residential, non-residential, as well as mid- and high-rise structural applications. These applications include lateral force-resisting systems, such as shear walls. The prospect of building larger and taller timber buildings creates structural design challenges; one of them being that lateral forces from wind and earthquakes are larger and create higher demands on the ‘hold-downs’ in shear wall buildings. These demands are multiple: strength to resist loads, lateral stiffness to minimize deflections and damage, as well as deformation compatibility to accommodate the desired system rocking behaviour during an earthquake. In this paper, contemporary and novel hold-down solutions for mass timber shear walls are presented and discussed, including recent research on internal-perforated steel plates fastened with self-drilling dowels, hyperelastic rubber pads with steel rods, and high-strength hold-downs with self-tapping screws.
Online Access
Free
Resource Link
Less detail

Seismic performance evaluation of innovative balloon type CLT rocking shear walls

https://research.thinkwood.com/en/permalink/catalogue3133
Year of Publication
2022
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Yang, T.Y.
Lepine-Lacroix, S.
Guerrero, J.A. Ramos
McFadden, J.B.W.
Al-Janabi, M.A.Q.
Organization
The University of British Columbia
National Research Council Canada
Al-Nahrain University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Rocking Shear Walls
CLT Shear Walls
Seismic Performance
Nonlinear Finite Element Model
Research Status
Complete
Series
Resilient Cities and Structures
Summary
Balloon type cross laminated timber (CLT) rocking shear walls are a novel seismic force resisting system. In this paper, the seismic performance of four 12-story balloon type CLT rocking shear walls, designed by a structural engineering firm located in Vancouver (Canada) using the performance-based design procedure outlined in the technical guideline published by the Canadian Construction Materials center (CCMC)/National Research Council Canada (NRC), is assessed. The seismic performance of the prototype CLT rocking shear walls was investigated using nonlinear time history analyses. Robust nonlinear finite element models were developed using OpenSees and the nonlinear behavior of the displacement-controlled components was calibrated using available experimental data. A detailed site-specific hazard analysis was conducted and sets of ground motions suitable for the prototype buildings were selected. The ground motions were used in a series of incremental dynamic analyses (IDAs) to quantify the adjustable collapse margin ratio (ACMR) of the prototype balloon type CLT rocking shear walls. The results show that the prototype balloon type CLT rocking shear walls designed using the performance-based design procedure outlined in the CCMC/NRC technical guideline have sufficient ACMR when compared to the acceptable limits recommended by FEMA P695.
Online Access
Free
Resource Link
Less detail

Advancing Knowledge of Mid-ply Shear Walls: Mid-Ply Shear Wall Fire Resistance Testing

https://research.thinkwood.com/en/permalink/catalogue2808
Year of Publication
2021
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2021
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Fire
Keywords
Shear Walls
Fire Resistance Rating
Mid-Rise
Midply Wall
Research Status
Complete
Summary
The objective of this research is to address a knowledge gap related to fire performance of midply shear walls. Testing has already been done to establish the structural performance of these assemblies. To ensure their safe implementation and their broad acceptance, this project will establish fire resistance ratings for midply shear walls. Fire tests will provide information for the development of design considerations for midply shear walls and confirm that they can achieve at least 1-hour fire-resistance ratings that are required for use in mid-rise buildings. This research will support greater adoption of mid-rise residential and non-residential wood-frame construction and improve competition with similar buildings of noncombustible construction. This work will also support the development of the APA system report for midply walls, which will be a design guideline for using midply walls in North America.
Online Access
Free
Resource Link
Less detail

On the distribution of internal forces in single-storey CLT symmetric shear-walls with openings

https://research.thinkwood.com/en/permalink/catalogue2850
Year of Publication
2021
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Casagrande, Daniele
Fanti, Riccardo
Greco, Marco
Gavric, Igor
Polastri, Andrea
Organization
Institute of Bioeconomy - National Research Council of Italy
University of Trento
University of Primorska
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
Shear Walls
Openings
Stress Distribution
Finite Element Modeling
Research Status
Complete
Series
Structures
Summary
This paper presents a numerical and analytical study on single-storey cross-laminated timber (CLT) shear-walls with openings subjected to lateral loads. The main objective was to investigate the location and distribution of maximum values of axial and shear forces in relevant wall sections. The influence of parameters such as wall geometry (different sizes of wall openings, door openings, lintel/parapet lengths and heights, wall thickness) and different stiffness levels of mechanical anchors for CLT wall connection with floor/foundation were studied. Finite element (FE) parametric analyses were performed on a set of single-storey CLT shear-walls with door and window openings and were compared with analytical models for determination of internal forces. The importance of wall connections’ flexibility was identified, as the distribution of internal forces in walls with rigid and flexible anchors were considerably different. The obtained outcomes of this study provide a solid base for the next step, an experimental investigation of in-plane internal force distribution in CLT walls with openings, which will serve for further development of numerical, analytical and design approaches.
Online Access
Free
Resource Link
Less detail

Lateral resistance of mass timber shear wall connected by withdrawal-type connectors

https://research.thinkwood.com/en/permalink/catalogue2847
Year of Publication
2021
Topic
Connections
Seismic
Mechanical Properties
Material
Other Materials
Application
Shear Walls
Author
Pang, Sung-Jun
Ahn, Kyung-Sun
Kang, Seog Goo
Oh, Jung-Kwon
Organization
Seoul National University
Publisher
SpringerOpen
Year of Publication
2021
Format
Journal Article
Material
Other Materials
Application
Shear Walls
Topic
Connections
Seismic
Mechanical Properties
Keywords
Ply-lam
Shear Walls
Lateral Resistance
Kinematic Model
Research Status
Complete
Series
Journal of Wood Science
Summary
In this study, the lateral resistances of mass timber shear walls were investigated for seismic design. The lateral resistances were predicted by kinematic models with mechanical properties of connectors, and compared with experimental data. Four out of 7 shear wall specimens consisted of a single Ply-lam panel and withdrawal-type connectors. Three out of 7 shear wall specimens consisted of two panels made by dividing a single panel in half. The divided panels were connected by 2 or 4 connectors like a single panel before being divided. The applied vertical load was 0, 24, or 120 kN, and the number of connectors for connecting the Ply-lam wall-to-floor was 2 or 4. As a result, the tested data were 6.3 to 52.7% higher than the predicted value by kinematic models, and it means that the lateral resistance can be designed by the behavior of the connector, and the prediction will be safe. The effects of wall-to-wall connectors, wall-to-floor connectors and vertical loads on the shear wall were analyzed with the experimental data.
Online Access
Free
Resource Link
Less detail

Expanding wood use towards 2025: seismic performance of midply shear walls, year 2

https://research.thinkwood.com/en/permalink/catalogue2917
Year of Publication
2021
Topic
Seismic
Material
Other Materials
Application
Shear Walls
Author
Ni, Chun
Chen, Zhiyong
Organization
FPInnovations
Year of Publication
2021
Format
Report
Material
Other Materials
Application
Shear Walls
Topic
Seismic
Keywords
Sheathing Thickness
Nail Spacing
Lateral Load Capacity
Drift Capacity
Energy Dissipation Capacity
Research Status
Complete
Summary
Midply shear wall, which was originally developed by researchers at Forintek Canada Corp. (predecessor of FPInnovations) and the University of British Columbia, is a high-capacity shear wall system that is suitable for high wind and seismic loadings. Its superior seismic performance was demonstrated in a full-scale earthquake simulation test of a 6-storey wood-frame building in Japan. In collaboration with APA–The Engineered Wood Association and the American Wood Council (AWC), a new framing arrangement was designed in this study to increase the vertical load resistance of midply shear walls and make it easier to accommodate electrical and plumbing services. In this study, a total of 12 midply shear wall specimens in four wall configurations with different sheathing thicknesses and nail spacing were tested under reversed cyclic loading. Test results showed that the modified midply shear walls have approximately twice the lateral load capacity of a comparable standard shear wall. The drift capacity and energy dissipation capability are also greater than comparable standard shear wall. Seismic equivalency to standard shear walls in accordance with ASTM D7989 was also conducted. Results show that an overstrength factor of 2.5 and can be used to assign allowable design strengths of midply shear walls with 7/16” and nail spacing at 4” or 3” on center. For midply shear walls with 19/32” OSB, a higher overstrength factor must be used to meet the ductility criteria. The information from this study will support code implementation of the midply shear walls in Canadian and US timber design standards, thereby providing more design options for light wood frame structures in North America.
Online Access
Free
Resource Link
Less detail

The role of the hold-down in the capacity model of LTF and CLT shear walls based on the experimental lateral response

https://research.thinkwood.com/en/permalink/catalogue2849
Year of Publication
2021
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Aloisio, Angelo
Boggian, Francesco
Tomasi, Roberto
Fragiacomo, Massimo
Organization
Università degli Studi dell'Aquila
University of Trento
Norwegian University of Life Science
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
Hold-Down
Rocking
Cyclic Response
Shear Walls
Light-frame wood
Research Status
Complete
Series
Construction and Building Materials
Summary
Cross Laminated Timber (CLT) and Light Timber Frame (LTF) shear walls are widespread constructive technologies in timber engineering. Despite the intrinsic differences, the lateral response of the two structural systems may be quite similar under specific connection layouts, boundary constraints, and size of the shear walls. This paper compares the experimental cyclic responses of CLT and LTF shear walls characterized by the same size 250×250cm, and loaded according to the EN 12512 protocol. The rigid-body rotation of the shear walls prevails over the deformation and rigid-body translation in the post-elastic displacement range. As a consequence, a capacity model of the two systems based on the sole hold-down response accurately seizes the observed cyclic response, despite ignoring the other resisting contributions. The authors examine the differences exhibited by the CLT and LTF shear walls and the related error corresponding to a capacity model based on the sole hold down restraints. Additionally, it is assessed the overstrength of the CLT panel and LTF sheathing to the shear walls collapse due to the hold-down failure. The estimated overstrength factor is the most meaningful difference between the two structural systems in the considered experimental layouts.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2405
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Cross Laminated Timber Shear Wall Connections for Seismic Applications

https://research.thinkwood.com/en/permalink/catalogue2406
Year of Publication
2020
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Combination of Steel Plate Shear Walls and Timber Moment Frames for Improved Seismic Performance

https://research.thinkwood.com/en/permalink/catalogue2735
Year of Publication
2020
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Frames
Author
Iqbal, Asif
Todorov, Borislav
Billah, Muntasir
Year of Publication
2020
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Frames
Topic
Seismic
Keywords
Timber Moment Frames
Steel Plate Shear Walls
Hybrid
Seismic Performance
Interstory Drifts
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Summary
Recent interests in adopting sustainable materials and developments in construction technology have created a trend of aiming for greater heights with timber buildings. With the increased height these buildings are subjected to higher level of lateral load demand. A common and efficient way to increase capacity is to use shearwalls, which can resist significant part of the load on the structures. Prefabricated mass timber panels such as those made of Cross-Laminated Timber (CLT) can be used to form the shearwalls. But due to relatively low stiffness value of timber it is often difficult to keep the maximum drifts within acceptable limit prescribed by building codes. It becomes necessary to either increase wall sizes to beyond available panel dimensions or use multiple or groups of walls spread over different locations over the floor plan. Both of the options are problematic from the economic and functional point of view. One possible alternative is to adopt a Hybrid system, using Steel Plate Shear Walls (SPSW) with timber moment frames. The SPSW has much higher stiffness and combined with timber frames it can reduce overall building drifts significantly. Frames with prefabricated timber members have considerable lateral load capacity. For structures located in seismic regions the system possesses excellent energy dissipation ability with combination of ductile SPSW and yielding elements within the frames. This paper investigates combination of SPSW with timber frames for seismic applications. Numerical model of the system has been developed to examine the interaction between the frames and shear walls under extreme lateral load conditions. Arrangements of different geometries of frames and shear walls are evaluated to determine their compatibility and efficiency in sharing lateral loads. Recommendations are presented for optimum solutions as well as practical limits of applications.
Online Access
Free
Resource Link
Less detail

Technical Guide for Evaluation of Seismic Force Resisting Systems and Their Force Modification Factors for Use in the National Building Code of Canada with Concepts Illustrated Using a Cantilevered Wood CLT Shear Wall Example

https://research.thinkwood.com/en/permalink/catalogue2804
Year of Publication
2021
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
DeVall, Ron
Popovski, Marjan
McFadden, Jasmine
Organization
National Research Council Canada, Canadian Construction Materials Centre
Publisher
National Research Council Canada
Year of Publication
2021
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Seismic Force Resisting System
Force Modification Factor
Ductility Factor
Overstrength
Non-linear Dynamic Analysis
National Building Code of Canada
Alternative Design Solution
Shear Walls
Research Status
Complete
Summary
The objective of this guideline is to provide a simple, systematic, and sufficient procedure for evaluating the performance of Seismic Force Resisting Systems (SFRSs) and to determine the appropriate ductilityrelated (Rd) and over-strength related (Ro) force modification factors for implementation in the National Building Code of Canada (NBC). The procedure relies on the application of non-linear dynamic analysis for quantification of the seismic performance of the SFRS. Note that the procedure is also suitable for assessing force modification factors (RdRo values) of systems already implemented in the NBC. The audience for this guideline are those (called the “project study team” in this document) who submit proposals for new SFRSs with defined RdRo values to the NBC for inclusion in Subsection 4.1.8., Earthquake Loads and Effects, of Division B of the NBC. This guideline can also be used by a team performing an alternative design solution for a specific project and seeking acceptance from authority having jurisdiction. In such cases, not all aspects of this guideline (e.g., having different archetypes) will be needed.
Online Access
Free
Resource Link
Less detail

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

https://research.thinkwood.com/en/permalink/catalogue2508
Year of Publication
2020
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls

Lateral Performance of Cross-laminated Timber Shear Walls: Analytical and Numerical Investigations

https://research.thinkwood.com/en/permalink/catalogue2425
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls

Cross-Laminated Timber Shear Walls in Balloon Construction: Seismic Performance of Steel Connections

https://research.thinkwood.com/en/permalink/catalogue2413
Year of Publication
2019
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls

Structural Design and Modelling Method for the Post-Tensioned CLT Shear Wall Structures

https://research.thinkwood.com/en/permalink/catalogue2149
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls

Numerical Model and Optimization for Cross-laminated Timber – Light Frame Wood Shear Walls Hybrid System

https://research.thinkwood.com/en/permalink/catalogue2416
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Interlocking Shear Wall Connections

https://research.thinkwood.com/en/permalink/catalogue2076
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Shear Walls
Author
Claus, Timo
Riehle, Tobias
Seim, Werner
Götz, Tobias
Organization
University of Kassel
Year of Publication
2018
Format
Conference Paper
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Timber-to-Timber
Interlocking
Load Bearing Capacity
Failure Modes
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
A new type of interlocking timber-to-timber connection was designed to simplify the structural details and the mounting conditions between wall elements and ceilings or floor panels in timber frame constructions. An experimental test series on different connector geometries was performed due to the unclear component behaviour and failure mechanism in mode II. The connection types achieved sufficient capacity but do not reach the predicted loads according to EC5. Thus, a mixed mode failure of mode I and II obviously occurs. A design approach is provided recognising all influences on the load-bearing capacity.
Online Access
Free
Resource Link
Less detail

Deflection of CLT Shear Walls in Platform Construction

https://research.thinkwood.com/en/permalink/catalogue1974
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Shahnewaz, Md
Tannert, Thomas
Popovski, Marjan
Alam, Marc
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Keywords
Platform Construction
Deflection
Connections
Shear
Lateral Loading
Bending
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
This paper contains the research results of a study related to developing an approach to estimate the deflection of Cross-Laminated Timber (CLT) shear walls for platform-framed construction. In order to account for the total deflection at the top of the wall, the contributions of connections and the CLT panels are considered. The connection contributions are accounted for through wall sliding and rocking, whereas the contribution of the CLT panels is estimated from the bending and shear deformation under lateral loading. The influence of perpendicular walls and floors above on the in-plane deflection of CLT shear wall is also investigated. A step by step procedure to estimate the deflection of CLT shear walls without and with perpendicular walls and floors above is discussed with examples.
Online Access
Free
Resource Link
Less detail

Strength and Stiffness of CLT Shear Walls in Platform Construction

https://research.thinkwood.com/en/permalink/catalogue1976
Year of Publication
2018
Topic
Design and Systems
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Shahnewaz, Md
Tannert, Thomas
Popovski, Marjan
Alam, Marc
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Connections
Mechanical Properties
Keywords
Finite Element Analysis
Shear
Stiffness Properties
Joints
Connectors
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The research presented in this paper is related to estimating the in-plane stiffness and strength of CLT shearwalls with different connections for platform-framed construction. Finite element analyses (FEA) for CLT shear walls with various types of connectors for wall-to-floor, wall-to-foundation, and wall-to-wall joints were conducted. The CLT panels were modelled using plane-stress shell elements with elastic material properties and the connections were modelled using nonlinear springs. The joints, consisting of traditional steel brackets, hold-downs, and screws connections, were modelled using nonlinear zero-length spring elements with "pinching4" hysteresis properties calibrated from tests. A parametric study was performed on single and coupled CLT shear walls with the variation of the number and types of connectors. The results showed that strength and stiffness increased significantly with the increase in the number of connectors. Placing hold-downs on both sides of the coupled shear walls increased performance-i.e. 43% and 25% increase in strength and stiffness compared to coupled shear walls with hold-downs located at the outer edges only.
Online Access
Free
Resource Link
Less detail

224 records – page 1 of 12.