Skip header and navigation

25 records – page 1 of 3.

Application of Quasi-Brittle Material Model for Analysis of Timber Members

https://research.thinkwood.com/en/permalink/catalogue925
Year of Publication
2014
Material
Solid-sawn Heavy Timber
Author
Khorsandnia, Nima
Crews, Keith
Publisher
Taylor&Francis Online
Year of Publication
2014
Format
Journal Article
Material
Solid-sawn Heavy Timber
Keywords
ultimate load
Finite Element Model
Load-Deflection Response
Failure Load
Four Point Bending Test
Research Status
Complete
Series
Australian Journal of Structural Engineering
Summary
Over the last two decades many constitutive models with different degrees of accuracy have been developed for analysis of sawn timber and engineered wood products. However, most of the existing models for analysis of timber members are not particularly practical to implement, owing to the large number of material properties (and associated testing) required for calibration of the constitutive law. In order to overcome this limitation, this paper presents details of 1D, 2D and 3D non-linear fi nite element (FE) models that take advantage of a quasi-brittle material model, requiring a minimum number of material properties to capture the load-defl ection response and failure load of timber beams under 4-point bending. In order to validate the model, four tapered timber piles with circular cross-section (two plains and two retrofi tted with steel jacket) were tested and analysed with the proposed 3D FE modelling technique; and a good correlation between experimentally observed and numerically captured ultimate load was observed. Consequently, it was concluded that the developed FE models used in conjunction with the quasi-brittle constitutive law were able to adequately capture the failure load and load-defl ection response of the fl exural timber elements.
Online Access
Free
Resource Link
Less detail

Block Shear Failure Mode of Axially Loaded Groups of Screws

https://research.thinkwood.com/en/permalink/catalogue1512
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Author
Mahlknecht, Ursula
Brandner, Reinhard
Augustin, Manfred
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Block Shear Model
Stiffness
Strength
Bending Stresses
Axially-Loaded
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 362-371
Summary
Self-tapping screws are efficient and flexible fasteners, applicable for many types of connections. Investigations on axially loaded groups of screws pointed out, that small spacing between the screws lead to block shear failure mode. So far, block and plug shear failure mode are only analysed for laterally loaded fasteners. Corresponding models cannot be simple transferred to primary axially loaded screws, because of their load insertion continuously along the effective thread featuring a thread-fibre angle perpendicular or with an angle to grain. Results gained by means of two different test configurations, with constant 90° thread-fibre angle but different configurations of group of screws and support conditions are presented. A block shear model is presented, and for mean values for stiffness and strength properties as model parameters are discussed together with values for parameters related to the force distribution over the effective thread length for the first test configuration. Agreement between model and test results was found on a conservative basis. As outlook, considerations of additional bending stresses as well as parameter optimisation are seen as prerequisites and next steps for further model improvement and practicality.
Online Access
Free
Resource Link
Less detail

Chapter 6: Fire Damage of Wood Structures

https://research.thinkwood.com/en/permalink/catalogue897
Year of Publication
2012
Topic
Fire
Mechanical Properties
Material
Solid-sawn Heavy Timber
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Author
Kukay, Brian
White, Robert
Woeste, Frank
Publisher
International Code Council
Year of Publication
2012
Format
Book/Guide
Material
Solid-sawn Heavy Timber
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Topic
Fire
Mechanical Properties
Keywords
Bending Tests
Withdrawal Tests
Load Bearing Capacity
Charring
Reduced Cross Section Method
Research Status
Complete
Series
Inspection, Testing, and Monitoring of Buildings and Bridges
Summary
Depending on the severity, fire damage can compromise the structural integrity of wood structures such as buildings or residences. Fire damage of wood structures can incorporate several models that address (1) the type, cause, and spread of the fire, (2) the thermal gradients and fire-resistance ratings, and (3) the residual load capacity. The investigator should employ engineering judgment to identify those in-service members that are to be replaced, repaired, or can remain in-service as they are. Suchjudgment will likely be based on the visual inspection of damaged members, connections, and any protective membranes.
Online Access
Free
Resource Link
Less detail

Characteristics of the Radio-Frequency/Vacuum Drying of Heavy Timbers for Post and Beam of Korean Style Housings Part II: For Korean Red Pine Heavy Timbers with 250 × 250 mm, 300 × 300 mm in Cross Section and 300 mm in Diameter, and 3,600 mm in Length

https://research.thinkwood.com/en/permalink/catalogue1508
Year of Publication
2011
Topic
Moisture
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Author
Lee, Nam-Ho
Zhao, Xue-Feng
Shin, Ik-Hyun
Park, Moon-Jae
Park, Jung-Hwan
Park, Joo-Saeng
Publisher
The Korean Society of Wood Science Technology
Year of Publication
2011
Format
Journal Article
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Topic
Moisture
Keywords
Radio-Frequency/Vacuum Drying
Moisture Gradient
Shrinkage
Case Hardening
Surface Checks
Compressive Load
Research Status
Complete
Series
Journal of the Korean Wood Science and Technology
Summary
This study examined the characteristics of radio-frequency/vacuum dried Korean red pine (Pinus densoflora heavy timbers with 250 × 250 mm (S), 300 × 300 mm (L) in cross section and 300 mm in diameter, and 3,600 mm in length, which were subjected to compressive loading after a kerf pretreatment. The following results were obtained : The drying time was short and the drying rate was high in spite of the large cross section of specimens. The moisture gradient inall specimens was gentle in both longitudinal and transverse directions owing to dielectric heating. The shrinkage of the width in the direction perpendicular to was 21 percent ~ 76 percent of that of the thickness of square timbers in the direction parallel to the mechanical pressure. The casehardening for all specimens was very slight because of significantly reduced ratio of the tangential to radial shrinkage of specimens and kerfing. The surface checks somewhat severely occurred although the occurrence extent of the surface checks on the kerfed specimens was slight compared withthat on the control specimen.
Online Access
Free
Resource Link
Less detail

Demonstrating Fire-Resistance Ratings for Mass Timber Elements in Tall Wood Structures

https://research.thinkwood.com/en/permalink/catalogue2919
Year of Publication
2021
Topic
Fire
Material
Solid-sawn Heavy Timber
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Beams
Floors
Author
McLain, Richard
Organization
WoodWorks
Year of Publication
2021
Format
Report
Material
Solid-sawn Heavy Timber
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Beams
Floors
Topic
Fire
Keywords
IBC
Minimum Dimensions
Fire Resistance Rating
Noncombustible Protection
Research Status
Complete
Summary
Changes to the 2021 International Building Code (IBC) have created opportunities for wood buildings that are much larger and taller than prescriptively allowed in past versions of the code. Occupant safety, and the need to ensure fire performance in particular, was a fundamental consideration as the changes were developed and approved. The result is three new construction types—Type IV-A, IV-B and IV-C—which are based on the previous Heavy Timber construction type (renamed Type IV-HT), but with additional fire protection requirements. One of the main ways to demonstrate that a building will meet the required level of passive fire protection, regardless of structural materials, is through hourly fire-resistance ratings (FRRs) of its elements and assemblies. The IBC defines an FRR as the period of time a building element, component or assembly maintains the ability to confine a fire, continues to perform a given structural function, or both, as determined by the tests, or the methods based on tests, prescribed in Section 703. FRRs for the new construction types are similar to those required for Type I construction, which is primarily steel and concrete. They are found in IBC Table 601, which includes FRR requirements for all construction types and building elements; however, other code sections should be checked for overriding provisions (e.g., occupancy separation, shaft enclosures, etc.) that may alter the requirement.
Online Access
Free
Resource Link
Less detail

Development of a Heavy Timber Moment-Resisting Frame with Ductile Steel Links

https://research.thinkwood.com/en/permalink/catalogue1657
Year of Publication
2016
Topic
Connections
Mechanical Properties
Seismic
Material
Solid-sawn Heavy Timber
Application
Frames
Author
Gohlich, Ryan
Erochko, Jeffrey
Year of Publication
2016
Format
Conference Paper
Material
Solid-sawn Heavy Timber
Application
Frames
Topic
Connections
Mechanical Properties
Seismic
Keywords
Mid-Rise
Self-Tapping Screws
Moment-Resisting
Strength
Stiffness
Ductility
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3571-3580
Summary
To improve the seismic performance of mid-rise heavy timber moment-resisting frames, a hybrid timbersteel moment-resisting connection was developed that incorporates specially detailed replaceable steel yielding link elements fastened to timber beams and columns using self-tapping screws (STS). Performance of the connection was verified using four 2/3 scale experimental tests. The connection reached a moment of 142 kN m at the column face while reaching a storey drift angle of 0.05 rad. Two specimens utilizing a dogbone detail in the steel link avoided fracture of the link, while two specimens absent of the dogbone detail underwent brittle failure at 0.05 rad drift. All four test specimens met the acceptance criteria in the AISC 341-10 provisions for steel moment frames. The STS connections exhibited high strength and stiffness, and all timber members and self-tapping screw connections remained elastic. The results of the experimental program indicated that this hybrid connection is capable of achieving a ductility factor similar to that of a steel-only moment-resisting connection. This research suggests that the use of high ductility factors in the design of timber systems that use the proposed hybrid connection would be appropriate, thus lowering seismic design base shears and increasing structure economy.
Online Access
Free
Resource Link
Less detail

Durability of Structural Lumber Products after Exposure at 82C and 80% Relative Humidity

https://research.thinkwood.com/en/permalink/catalogue784
Year of Publication
2005
Topic
Mechanical Properties
Moisture
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Solid-sawn Heavy Timber
Author
Green, David
Evans, James
Hatfield, Cherilyn
Byrd, Pamela
Organization
Forest Products Laboratory
Year of Publication
2005
Format
Report
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Solid-sawn Heavy Timber
Topic
Mechanical Properties
Moisture
Keywords
Aspen
Douglas-Fir
Modulus of Elasticity
Modulus of Rupture
Southern Pine
Poplar
Relative Humidity
SPF
Temperature
Flexural Properties
Research Status
Complete
Summary
Solid-sawn lumber (Douglas-fir, southern pine, Spruce– Pine–Fir, and yellow-poplar), laminated veneer lumber (Douglas-fir, southern pine, and yellow-poplar), and laminated strand lumber (aspen and yellow-poplar) were heated continuously at 82°C (180°F) and 80% relative humidity (RH) for periods of up to 24 months. The lumber was then reconditioned to room temperature at 20% RH and tested in edgewise bending. Little reduction occurred in modulus of elasticity (MOE) of solid-sawn lumber, but MOE of composite lumber products was somewhat reduced. Modulus of rupture (MOR) of solid-sawn lumber was reduced by up to 50% after 24 months exposure. Reductions in MOR of up to 61% were found for laminated veneer lumber and laminated strand lumber after 12 months exposure. A limited scope study indicated that the results for laminated veneer lumber in edgewise bending are also applicable to flatwise bending. Comparison with previous results at 82°C (180°F)/25% RH and at 66°C (150°F)/20% RH indicate that differences in the permanent effect of temperature on MOR between species of solid-sawn lumber and between solid-sawn lumber and composite lumber products are greater at high humidity levels than at low humidity levels. This report also describes the experimental design of a program to evaluate the permanent effect of temperature on flexural properties of structural lumber, with reference to previous publications on the immediate effect of temperature and the effect of moisture content on lumber properties.
Online Access
Free
Resource Link
Less detail

Dynamic Behaviour of Dowel-Type Connections Under In-Service Vibration

https://research.thinkwood.com/en/permalink/catalogue884
Year of Publication
2013
Topic
Connections
Serviceability
Acoustics and Vibration
Material
Solid-sawn Heavy Timber
Application
Frames
Beams
Author
Reynolds, Thomas
Organization
University of Bath
Year of Publication
2013
Format
Thesis
Material
Solid-sawn Heavy Timber
Application
Frames
Beams
Topic
Connections
Serviceability
Acoustics and Vibration
Keywords
dowel-type connections
Embedment
Nonlinear Behaviour
Time Dependent Behaviour
Energy Dissipation
Portal Frames
Research Status
Complete
Summary
This study investigated the vibration serviceability of timber structures with dowel-type connections. It addressed the use of such connections in cutting-edge timber structures such as multi-storey buildings and long-span bridges, in which the light weight and flexibility of the structure make it possible that vibration induced by dynamic forces such as wind or footfall may cause discomfort to occupants or users of the structure, or otherwise impair its intended use. The nature of the oscillating force imposed on connections by this form of vibration was defined based on literature review and the use of established mathematical models. This allowed the appropriate cyclic load to be applied in experimental work on the most basic component of a dowel-type connection: a steel dowel embedding into a block of timber. A model for the stiffness of the timber in embedment under this cyclic load was developed based on an elastic stress function, which could then be used as the basis of a model for a complete connector. Nonlinear and time-dependent behaviour was also observed in embedment, and a simple rheological model incorporating elastic, viscoelastic and plastic elements was fitted to the measured response to cyclic load. Observations of the embedment response of the timber were then used to explain features of the behaviour of complete single- and multiple-dowel connections under cyclic load representative of in-service vibration. Complete portal frames and cantilever beams were tested under cyclic load, and a design method was derived for predicting the stiffness of such structures, using analytical equations based on the model for embedment behaviour. In each cyclic load test the energy dissipation in the specimen, which contributes to the damping in a complete structure, was measured. The analytical model was used to predict frictional energy dissipation in embedment, which was shown to make a significant contribution to damping in single-dowel connections. Based on the experimental results and analysis, several defining aspects of the dynamic response of the complete structures, such as a reduction of natural frequency with increased amplitude of applied load, were related to the observed and modelled embedment behaviour of the connections.
Online Access
Free
Resource Link
Less detail

Effectiveness of Several NDE Technologies in Detecting Moisture Pockets and: Artificial Defects in Sawn Timber and Glulam

https://research.thinkwood.com/en/permalink/catalogue778
Year of Publication
2016
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Application
Bridges and Spans
Author
Wacker, James
Senalik, Christopher
Wang, Xping
Jalinoos, Frank
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Application
Bridges and Spans
Topic
Serviceability
Keywords
Decay
Douglas-Fir
Moisture Pockets
Non-Destructive Evaluation
Scanning
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
Several nondestructive evaluation (NDE) technologies were studied to determine their efficacy as scanning devices to detect internal moisture and artificial decay pockets. Large bridge-sized test specimens, including sawn timber and glued-laminated timber members, were fabricated with various internal defects. NDE Technologies evaluated in this research were ground penetrating radar (GPR), microwave scanning, ultrasonic pulse velocity, ultrasonic shear wave tomography, and impact echo methods. Each NDE technology was used to evaluate a set of seven test specimens over a 2-day period and then raw data scans were processed into two-dimensional, internal defect maps. Several parameters were, compared including the relative size, orientation, and moisture conditions of the internal defect. GPR was the most promising NDE technology and is currently being more rigorously evaluated within the laboratory. The study results will be useful in the further development of a reliable NDE scanning technique that can be utilized to inspect the primary structural components in historic covered timber bridges.
Online Access
Free
Resource Link
Less detail

Effect of Reserve Air-Drying of Korean Pine Heavy Timbers on High-Temperature and Low-Humidity Drying Characteristics

https://research.thinkwood.com/en/permalink/catalogue1506
Year of Publication
2014
Topic
Moisture
Material
Solid-sawn Heavy Timber
Author
Lee, Chang-Jin
Lee, Nam-Ho
Park, Moon-Jae
Park, Joo-Saeng
Eom, Chang-Deuk
Publisher
The Korean Society of Wood Science Technology
Year of Publication
2014
Format
Journal Article
Material
Solid-sawn Heavy Timber
Topic
Moisture
Keywords
Moisture Content
Temperature
Humidity
Pine
Air Drying
Shrinkage
Internal Checks
Twist
Case Hardening
Research Status
Complete
Series
Journal of the Korean Wood Science and Technology
Summary
The pre-air-drying of Korean pine before the high-temperature and low-humidity drying was shown to be effective in uniform moisture content distribution and prevention of surface check. Our results suggest that initial moisture content of the timber also plays important role in high-temperature and low-humidity drying method. The pre-air-drying also helps in the reduction of surface checks in Korean pine when compared to the Korean pine dried by only high-temperature and low-humidity. End-coating was not effective in the prevention of twist, shrinkage, case hardening and internal checks. The pre-air-drying reduces the internal tension stresses which occur during high-temperature and low-humidity drying thus decreasing case hardening and also preventing internal checks. The pre-air-drying decreases the moisture content and causes shrinkage which leads to increased twist in the Korean pine.
Online Access
Free
Resource Link
Less detail

25 records – page 1 of 3.