Skip header and navigation

13 records – page 1 of 2.

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue2639
Year of Publication
2020
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Floors
Walls

Acoustical Performance of Mass Timber Building Elements

https://research.thinkwood.com/en/permalink/catalogue2553
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Sound Insulation
Acoustic Membrane
Acoustical Performance
Research Status
In Progress
Notes
Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
Building acoustics has been identified as one of the key subjects for the success of mass timber in the multi-storey building markets. The project will investigate the acoustical performance of mass timber panels produced in British Columbia. The apparent sound transmission class (ASTC) and impact insulation class (AIIC) of bare mass timber elements as wall and/ or floor elements will be measured through a lab mock-up. It is expected that a database of the sound insulation performance of British Columbia mass timber products will be developed with guidance on optimal acoustical treatments to achieve different levels of performance.
Less detail

Addendum to RR-335: Sound Transmission Through Nail-Laminated Timber (NLT) Assemblies

https://research.thinkwood.com/en/permalink/catalogue1868
Year of Publication
2018
Topic
Acoustics and Vibration
Material
NLT (Nail-Laminated Timber)
Application
Floors
Walls

Apparent Sound Insulation in Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2616
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Author
Mahn, Jeffrey
Quirt, David
Mueller-Trapet, Markus
Hoeller, Christoph
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Airborne Sound Transmission
Apparent Sound Transmission Class
Sound Transmission
Adhesive
Language
English
Research Status
Complete
Summary
This Report presents the results from experimental studies of the airborne sound transmission of mass timber assemblies, together with an explanation of the calculation procedures to predict the apparent sound transmission class (ASTC) rating between adjacent spaces in a building constructed of mass timber assemblies. The experimental data which is the foundation for this Report includes the laboratory measured sound transmission loss of wall and floor assemblies constructed of Cross Laminated Timber (CLT), Nail-Laminated Timber (NLT) and Dowel-Laminated Timber (DLT), and the laboratory measured vibration reduction index between assemblies of junctions between CLT assemblies. The presentation of the measured data is combined with the presentation of the appropriate calculation procedures to determine the ASTC rating in buildings comprised of such assemblies along with numerous worked examples. Several types of CLT constructions are commercially available in Canada, but this study focused on CLT assemblies with an adhesive applied between the faces of the timber elements in adjacent layers, but no adhesive bonding between the adjacent timber elements within a given layer. These CLT assemblies could be called “Face-Laminated CLT Assemblies” but are simply referred to as CLT assemblies in this Report. Another form of CLT assemblies does have adhesive applied between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These assemblies are referred to as “Fully-Bonded CLT Assemblies” in this Report. Because fully-bonded CLT assemblies have different properties than face-laminated CLT assemblies, the sound transmission data and predictions in this Report do not apply to fully-bonded CLT assemblies.
Online Access
Free
Resource Link
Less detail

Blast Testing of Loaded Mass Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1164
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Walls

Development of Mass Timber Wall System Based on Nail Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2526
Year of Publication
2020
Topic
Design and Systems
Material
NLT (Nail-Laminated Timber)
Application
Walls
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
Timber Engineering and Applied Mechanics (TEAM) Laboratory
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Shear
Stiffness
Fasteners
Fastener Type
Load
Language
English
Research Status
Complete
Summary
This project studied the feasibility and performance of a mass timber wall system based on Nail Laminated Timber (NLT) for floor/wall applications, in order to quantify the effects of various design parameters. Thirteen 2.4 m × 2.4 m shear walls were manufactured and tested in this phase. Together with another five specimens tested before, a total eighteen shear wall specimens and ten configurations were investigated. The design variables included fastener type, sheathing thickness, number of sheathings, sheathing material, nailing pattern, wall opening, and lumber orientation. The NLT walls were made of SprucePine-Fir (SPF) No. 2 2×4 (38 mm × 89 mm) lumber and Oriented Strand Lumber (OSB) or plywood sheathing. They were tested under monotonic and reverse-cyclic loading protocols, in accordance with ASTM E564-06 (2018) and ASTM E2126-19, respectively. Compared to traditional wood stud walls, the best performing NLT based shear wall had 2.5 times the peak load and 2 times the stiffness at 0.5-1.5% drift, while retaining high ductility. The advantage of these NLT-based wall was even greater under reverse-cyclic loading due to the internal energy dissipation of NLT. The wall with ring nails had higher stiffness than the one with smooth nails. But the performance of ring nails deteriorated drastically under reverse-cyclic loading, leading to a considerably lower capacity. Changing the sheathing thickness from 11 mm to 15 mm improved the strength by 6% while having the same initial stiffness. Adding one more face of sheathing increased the peak load and stiffness by at least 50%. The wall was also very ductile as the load dropped less than 10% when the lateral displacement exceeded 150 mm. The difference created by sheathing material was not significant if they were of the same thickness. Reducing the nailing spacing by half led to a 40% increasing in the peak load and stiffness. Having an opening of 25% of the area at the center, the lateral capacity and stiffness reached 75% or more of the full wall. A simplified method to estimate the lateral resistance of this mass timber wall system was proposed. The estimate was close to the tested capacity and was on the conservative side. Recommendations for design and manufacturing the system were also presented.
Online Access
Free
Resource Link
Less detail

Evaluation of Bending Performance of Nail Laminated and Dowel Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2309
Year of Publication
2019
Topic
Design and Systems
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Roofs
Bridges and Spans
Wood Building Systems

Facilitation of Acoustics Testing for Sustainable Mass Timber Technologies, Leading to Publication of Open Source Acoustics Data for Standard Acoustics Scenarios

https://research.thinkwood.com/en/permalink/catalogue2629
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Organization
University of Oregon
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Acoustics Testing Facility
Research Status
In Progress
Notes
Project contact is Kevin Van Den Wymelenberg at the University of Oregon
Summary
Our aim is to support the acceptance and increase market share of sustainable mass timber construction technologies such as Cross Laminated Timber (CLT), Mass Plywood Panel (MPP), Glue Laminated Timber (GLT), and Nail Laminated Timber (NLT), by lowering or eliminating barriers due to lack of acoustics data for mass timber construction assemblies. Currently, sustainable mass timber projects carry the cost of required acoustics testing, impairing their economic feasibility. With our new acoustics testing facility, testing supported by this grant will produce common acoustics data on the assemblies most in market demand. These data will be hosted in an online open-access database, supporting rapid growth in this industry. Increasingly specialized testing scenarios will be more easily accommodated, as this facility is located closer to USFS source materials and production facilities than currently operating facilities and is designed specifically for the specialized requirements of testing mass timber assemblies. Since sustainable mass timber technologies allow increased utilization of lower quality timber, and timber with insect damage, increasing the market share of mass timber will increase utilization of USFS timber, specifically that which might otherwise remain on-site unused. With removal of this type of timber, fire load will be lessened as well. Initial testing supported by this grant will include mass timber assemblies constructed with lower quality and smaller dimension timber.
Less detail

Guide for On-site Moisture Management of Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1968
Year of Publication
2016
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
OSL (Oriented Strand Lumber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Floors
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Publisher
BC Housing Research Centre
Year of Publication
2016
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
OSL (Oriented Strand Lumber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Floors
Wood Building Systems
Topic
Moisture
Keywords
Moisture Management
Construction
Risk Mitigation
Prefabrication
Multi-Storey
Language
English
Research Status
Complete
Summary
Overall moisture management during construction has become increasingly important due to the increase in building height and area, which potentially prolongs the exposure to inclement weather, and the overall increase in speed of construction, which may not allow adequate time for drying to occur. This report provides guidelines and relevant information about on-site moisture management practices that can be adapted to suit a range of wood construction projects...
Online Access
Free
Resource Link
Less detail

Hybridised Australian Cross Laminated Timber (ACLT) and Orientated Strand Board (OSB) Wall Panels - A Case Study

https://research.thinkwood.com/en/permalink/catalogue703
Year of Publication
2014
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Walls
Author
Bylund, David
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Australia
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Following on from the author’s recently completed doctorial research investigating Scandinavian industrially produced engineered construction methodologies and their potential application in Australia, this paper reports on the research and development...
Online Access
Free
Resource Link
Less detail

13 records – page 1 of 2.