Skip header and navigation

Refine Results By

46 records – page 1 of 5.

Joint Professional Practice Guidelines: Encapsulated Mass Timber Construction up to 12 Storeys

https://research.thinkwood.com/en/permalink/catalogue2772
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
Architectural Institute of British Columbia (AIBC)
Engineers and Geoscientists British Columbia
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Acoustics
Structural
Design
Building Enclosure
Architecture
Quality Assurance
Building Code
Encapsulated Mass Timber Construction
Engineering
Fire Protection
Language
English
Research Status
Complete
Summary
These Joint Professional Practice Guidelines – Encapsulated Mass Timber Construction Up to 12 Storeys were jointly prepared by the Architectural Institute of British Columbia (AIBC) and Engineers and Geoscientists British Columbia. The AIBC and Engineers and Geoscientists BC regulate and govern the professions of architecture, engineering, and geoscience under the Architects Act and the Professional Governance Act. The AIBC and Engineers and Geoscientists BC each have a regulatory mandate to protect the public interest, which is met in part by setting and maintaining appropriate academic, experience, and professional practice standards. Engineering Professionals are required per Section 7.3.1 of the Bylaws - Professional Governance Act to have regard for applicable standards, policies, plans, and practices established by the government or by Engineers and Geoscientists BC, including professional practice guidelines. For Engineering Professionals, these professional practice guidelines clarify the expectations for professional practice, conduct, and competence when providing engineering services for EMTC buildings. For Architects, these guidelines provide important information and identify issues to be considered when providing architectural services for EMTC buildings. These guidelines deal with the performance of specific activities in a manner such that Architects and Engineering Professionals can meet their professional obligations under the Architects Act and the Professional Governance Act. These guidelines were developed in response to new classifications of building size and construction relative to occupancy introduced in the 2018 British Columbia Building Code (BCBC), under Division B, Article 3.2.2.48EMTC. Group C, up to 12 storeys, Sprinklered, and Article 3.2.2.57EMTC. Group D, up to 12 storeys, Sprinklered. These new classifications were introduced in Revision 2 of the 2018 BCBC on December 12, 2019 and in Amendment 12715 of the 2019 Vancouver Building By-law (VBBL) on July 1, 2020. Additionally, provisions related to Encapsulated Mass Timber Construction (EMTC) were introduced in Revision 1 of the 2018 British Columbia Fire Code (BCFC) on December 12, 2019. These guidelines were first published in 2021 to provide guidance on architectural and engineering considerations relating to these significant changes to the 2018 BCBC, the 2019 VBBL, and the 2018 BCFC. For Engineering Professionals, these guidelines are intended to clarify the expectations of professional practice, conduct, and competence when Engineering Professionals are engaged on an EMTC building. For Architects, these guidelines inform and support relevant competency standards of practice to be met when Architects are engaged on an EMTC building. As with all building and construction types, the EMTC-specific code provisions prescribe minimum requirements that must be met. The majority of EMTC of 7 to 12 storeys are considered High Buildings, and as such are subject to the BCBC, Subsection 3.2.6. Additional Requirements for High Buildings.
Online Access
Free
Resource Link
Less detail

Development of Mass Timber Wall System Based on Nail Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2526
Year of Publication
2020
Topic
Design and Systems
Material
NLT (Nail-Laminated Timber)
Application
Walls
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
Timber Engineering and Applied Mechanics (TEAM) Laboratory
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Shear
Stiffness
Fasteners
Fastener Type
Load
Language
English
Research Status
Complete
Summary
This project studied the feasibility and performance of a mass timber wall system based on Nail Laminated Timber (NLT) for floor/wall applications, in order to quantify the effects of various design parameters. Thirteen 2.4 m × 2.4 m shear walls were manufactured and tested in this phase. Together with another five specimens tested before, a total eighteen shear wall specimens and ten configurations were investigated. The design variables included fastener type, sheathing thickness, number of sheathings, sheathing material, nailing pattern, wall opening, and lumber orientation. The NLT walls were made of SprucePine-Fir (SPF) No. 2 2×4 (38 mm × 89 mm) lumber and Oriented Strand Lumber (OSB) or plywood sheathing. They were tested under monotonic and reverse-cyclic loading protocols, in accordance with ASTM E564-06 (2018) and ASTM E2126-19, respectively. Compared to traditional wood stud walls, the best performing NLT based shear wall had 2.5 times the peak load and 2 times the stiffness at 0.5-1.5% drift, while retaining high ductility. The advantage of these NLT-based wall was even greater under reverse-cyclic loading due to the internal energy dissipation of NLT. The wall with ring nails had higher stiffness than the one with smooth nails. But the performance of ring nails deteriorated drastically under reverse-cyclic loading, leading to a considerably lower capacity. Changing the sheathing thickness from 11 mm to 15 mm improved the strength by 6% while having the same initial stiffness. Adding one more face of sheathing increased the peak load and stiffness by at least 50%. The wall was also very ductile as the load dropped less than 10% when the lateral displacement exceeded 150 mm. The difference created by sheathing material was not significant if they were of the same thickness. Reducing the nailing spacing by half led to a 40% increasing in the peak load and stiffness. Having an opening of 25% of the area at the center, the lateral capacity and stiffness reached 75% or more of the full wall. A simplified method to estimate the lateral resistance of this mass timber wall system was proposed. The estimate was close to the tested capacity and was on the conservative side. Recommendations for design and manufacturing the system were also presented.
Online Access
Free
Resource Link
Less detail

Encapsulation of Mass Timber Floor Surfaces

https://research.thinkwood.com/en/permalink/catalogue2528
Year of Publication
2020
Topic
Design and Systems
Fire
Material
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Floors

Apparent Sound Insulation in Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2616
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Author
Mahn, Jeffrey
Quirt, David
Mueller-Trapet, Markus
Hoeller, Christoph
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Airborne Sound Transmission
Apparent Sound Transmission Class
Sound Transmission
Adhesive
Language
English
Research Status
Complete
Summary
This Report presents the results from experimental studies of the airborne sound transmission of mass timber assemblies, together with an explanation of the calculation procedures to predict the apparent sound transmission class (ASTC) rating between adjacent spaces in a building constructed of mass timber assemblies. The experimental data which is the foundation for this Report includes the laboratory measured sound transmission loss of wall and floor assemblies constructed of Cross Laminated Timber (CLT), Nail-Laminated Timber (NLT) and Dowel-Laminated Timber (DLT), and the laboratory measured vibration reduction index between assemblies of junctions between CLT assemblies. The presentation of the measured data is combined with the presentation of the appropriate calculation procedures to determine the ASTC rating in buildings comprised of such assemblies along with numerous worked examples. Several types of CLT constructions are commercially available in Canada, but this study focused on CLT assemblies with an adhesive applied between the faces of the timber elements in adjacent layers, but no adhesive bonding between the adjacent timber elements within a given layer. These CLT assemblies could be called “Face-Laminated CLT Assemblies” but are simply referred to as CLT assemblies in this Report. Another form of CLT assemblies does have adhesive applied between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These assemblies are referred to as “Fully-Bonded CLT Assemblies” in this Report. Because fully-bonded CLT assemblies have different properties than face-laminated CLT assemblies, the sound transmission data and predictions in this Report do not apply to fully-bonded CLT assemblies.
Online Access
Free
Resource Link
Less detail

Hem-Fir Mass Timber Research Report

https://research.thinkwood.com/en/permalink/catalogue2531
Year of Publication
2020
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Organization
Ference & Company
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Topic
Market and Adoption
Keywords
Mass Timber
Research
Regulatory Factors
Technical Factors
Market Factors
Language
English
Research Status
Complete
Summary
The purpose of the study is to evaluate and summarize any technical or other impediments to using hem-fir in mass timber products. The different mass timber products included in the study are cross-laminated timber (CLT), glue-laminated timber (glulam), dowel-laminated timber (DLT) and nail-laminated timber (NLT).
Online Access
Free
Resource Link
Less detail

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue2639
Year of Publication
2020
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Floors
Walls

Evaluating Fire Performance of Nail-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2092
Year of Publication
2019
Topic
Fire
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
NBCC
Fire Safety
Language
English
Research Status
Complete
Summary
The objective of this work is to generate fire resistance data for NLT assemblies to address significant gaps in technical knowledge. This research will support designers and builders in the use of mass timber assemblies in larger and taller buildings, as well as provide scientific justification for Authorities Having Jurisdiction (AHJ) to review and accept this construction method. The intent is to demonstrate that NLT construction can meet or exceed NBCC fire safety requirements for use in buildings of mass timber construction. The data could be used towards the inclusion of an NLT fire resistance calculation methodology into Annex B of CSA 086 - Engineering Design for Wood, which currently addresses only glue-laminated timber (GLT), structural composite lumber (SCL) and cross-laminated timber (CLT).
Online Access
Free
Resource Link
Less detail

Evaluating Fire Performance of Nail-Laminated Timber: Influence of Gaps

https://research.thinkwood.com/en/permalink/catalogue2093
Year of Publication
2019
Topic
Fire
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Charring
Gaps
Language
English
Research Status
Complete
Summary
The objective of this work is to generate fire performance data for NLT assemblies to address gaps in technical knowledge. This project aims to study how the size of gaps between NLT boards might affect charring of an assembly and its overall fire performance. This research will support designers and builders in the use of mass timber assemblies in larger and taller buildings, by ensuring fire safe designs.
Online Access
Free
Resource Link
Less detail

Evaluating Fire Performance of Nail-Laminated Timber: Surface Flammability

https://research.thinkwood.com/en/permalink/catalogue2094
Year of Publication
2019
Topic
Fire
Design and Systems
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
Flame Spread
Fire Safety
Language
English
Research Status
Complete
Summary
The objective of this project is to establish fundamental fire performance data for the design and specification of NLT assemblies; this project specially addresses determining FSRs for NLT. The goal of this project is to confirm that NLT, when used as a mass timber element, has a lower FSR than standard thickness SPF boards when tested individually and flatwise. The project also considers how the surface profiles, design details, and the direction of an assembly might influence flame spread. This includes the evaluation of typical architectural features, such as a 'fluted' profile.
Online Access
Free
Resource Link
Less detail

Robotic Fabrication of Nail Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2493
Year of Publication
2019
Topic
Design and Systems
Material
NLT (Nail-Laminated Timber)
Application
Wood Building Systems

46 records – page 1 of 5.