Skip header and navigation

Refine Results By

27 records – page 1 of 3.

Acoustical Performance of Mass Timber Building Elements

https://research.thinkwood.com/en/permalink/catalogue2553
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Sound Insulation
Acoustic Membrane
Acoustical Performance
Research Status
In Progress
Notes
Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
Building acoustics has been identified as one of the key subjects for the success of mass timber in the multi-storey building markets. The project will investigate the acoustical performance of mass timber panels produced in British Columbia. The apparent sound transmission class (ASTC) and impact insulation class (AIIC) of bare mass timber elements as wall and/ or floor elements will be measured through a lab mock-up. It is expected that a database of the sound insulation performance of British Columbia mass timber products will be developed with guidance on optimal acoustical treatments to achieve different levels of performance.
Less detail

Apparent Sound Insulation in Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2616
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Author
Mahn, Jeffrey
Quirt, David
Mueller-Trapet, Markus
Hoeller, Christoph
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Airborne Sound Transmission
Apparent Sound Transmission Class
Sound Transmission
Adhesive
Language
English
Research Status
Complete
Summary
This Report presents the results from experimental studies of the airborne sound transmission of mass timber assemblies, together with an explanation of the calculation procedures to predict the apparent sound transmission class (ASTC) rating between adjacent spaces in a building constructed of mass timber assemblies. The experimental data which is the foundation for this Report includes the laboratory measured sound transmission loss of wall and floor assemblies constructed of Cross Laminated Timber (CLT), Nail-Laminated Timber (NLT) and Dowel-Laminated Timber (DLT), and the laboratory measured vibration reduction index between assemblies of junctions between CLT assemblies. The presentation of the measured data is combined with the presentation of the appropriate calculation procedures to determine the ASTC rating in buildings comprised of such assemblies along with numerous worked examples. Several types of CLT constructions are commercially available in Canada, but this study focused on CLT assemblies with an adhesive applied between the faces of the timber elements in adjacent layers, but no adhesive bonding between the adjacent timber elements within a given layer. These CLT assemblies could be called “Face-Laminated CLT Assemblies” but are simply referred to as CLT assemblies in this Report. Another form of CLT assemblies does have adhesive applied between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These assemblies are referred to as “Fully-Bonded CLT Assemblies” in this Report. Because fully-bonded CLT assemblies have different properties than face-laminated CLT assemblies, the sound transmission data and predictions in this Report do not apply to fully-bonded CLT assemblies.
Online Access
Free
Resource Link
Less detail

Buildings Made of Dowel-Laminated Timber: Joint and Shear Wall Properties

https://research.thinkwood.com/en/permalink/catalogue1718
Year of Publication
2016
Topic
Mechanical Properties
Seismic
Connections
Material
DLT (Dowel Laminated Timber)
Application
Shear Walls
Author
Sandhaas, Carmen
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
DLT (Dowel Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Seismic
Connections
Keywords
Joints
Load Carrying Capacity
Cyclic Tests
Energy Dissipation
Behaviour Factors
Numerical Models
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4589-4596
Summary
Dowel-laminated timber (DLT) elements consist of lamellae arranged side-by-side that are connected with beech dowels. Due to the glue-free DLT element layup, joints and shear walls potentially suffer from considerable reduction of stiffness and load carrying capacity as metal fasteners inserted perpendicular to the element plane may be...
Online Access
Free
Resource Link
Less detail

A Cradle-to-Cradle Approach to Timber Post and Beam Structures

https://research.thinkwood.com/en/permalink/catalogue1481
Year of Publication
2016
Topic
Environmental Impact
Design and Systems
Connections
Material
Glulam (Glue-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Wood Building Systems

Design Options for Three- and Four-Storey Wood School Buildings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2373
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Author
Bevilacqua, Nick
Dickof, Carla
Wolfe, Ray
Gan, Wei-Jie
Embury-Williams, Lynn
Organization
Fast + Epp
Wood Works! BC
Thinkspace
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Construction
Education
School Buildings
Mass Timber
Multi-Storey
Building Code
Fire Protection
Language
English
Research Status
Complete
Summary
This study illustrates the range of possible wood construction approaches for school buildings that are up to four storeys in height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This study is closely related to the report Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction prepared by GHL Consultants, which explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys, while also imposing limits on the overall floor area. As such, the reader is referred to the GHL report for further information regarding building code compliance (with a particular emphasis on fire protection) for wood school buildings.
Online Access
Free
Resource Link
Less detail

Effect of Design Parameters on Mass Timber Floor Vibration Performance

https://research.thinkwood.com/en/permalink/catalogue2683
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
DLT (Dowel Laminated Timber)
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Concrete Topping
Plywood
Vibration Performance
Bending Stiffness
Language
English
Research Status
Complete
Summary
Mass timber is a generic name for a broad range of thick and heavy wood products such as cross-laminated timber (CLT), dowel-laminated timber (DLT), nail-laminated timber (NLT), and gluelaminated timber (GLT), among others. So far, vibration-controlled design methods have been developed mostly for CLT floors.
Online Access
Free
Resource Link
Less detail

Effet des Paramètres de Conception Sur la Performance Vibratoire des Planchers Massifs en Bois

https://research.thinkwood.com/en/permalink/catalogue2684
Year of Publication
2020
Topic
Acoustics and Vibration
Energy Performance
Material
DLT (Dowel Laminated Timber)
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Energy Performance
Keywords
Concrete Topping
Plywood
Vibration Performance
Bending Stiffness
Language
French
Research Status
Complete
Summary
La construction massive en bois est un terme générique qui englobe une grande variété de produits du bois épais et lourds, notamment le bois lamellé-croisé (CLT), le bois lamellé-goujonné (DLT), le bois lamellé-cloué et le bois lamellé-collé (GLT). À ce jour, les méthodes de conception à vibrations contrôlées ont surtout été élaborées pour les planchers en CLT.
Online Access
Free
Resource Link
Less detail

Encapsulated Mass Timber Construction: Guidelines for Encapsulation Details and Techniques

https://research.thinkwood.com/en/permalink/catalogue2600
Year of Publication
2019
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Ranger, Lindsay
Geraghty, Simon
Jeske, Judy
Rahmani, Alma
Dorsey, Cheryl
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Encapsulated Mass Timber Construction
EMTC
Fire Protection
Construction Safety
Language
English
Research Status
Complete
Summary
The purpose of this guide is to provide an introduction to the concept of encapsulated mass timber construction. This guide provides an overview of encapsulation techniques for mass timber construction, and other related fire protection measures, and summarizes some approved encapsulation materials and application methods and identifies additional requirements for safety during construction. This guide is intended to help architects, engineers and designers by reducing uncertainty and allowing for more confidence in design, as well as providing authorities having jurisdiction and inspectors with a reference for simple design review.
Online Access
Free
Resource Link
Less detail

Evaluation of Bending Performance of Nail Laminated and Dowel Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2309
Year of Publication
2019
Topic
Design and Systems
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Roofs
Bridges and Spans
Wood Building Systems

The Global Mass Timber Panel (MTP) Industry in a Post-Pandemic New Normal

https://research.thinkwood.com/en/permalink/catalogue2782
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Topic
Market and Adoption
Keywords
Manufacturing
Production Capacity
Research Status
In Progress
Notes
Project contact is Lech Muszynski, Oregon State University College of Forestry
Summary
This research is a continuation of a long-term effort of systematically monitoring developments in the global CLT industry launched by the PI in 2011 and since 2017 partially funded by an ARS/TDI grant. Overall, including research conducted before ARS funding, this effort has involved two surveys launched in 2016 and in 2019; 46 targeted site tours of CLT manufacturing lines located in the USA, Japan, Australia, New Zealand, China, France, Germany, Norway, Sweden, Finland, and Estonia; and an extensive review of trade journals tracking the development of the CLT industry. While adhesive-bonded CLT remains the main focus of the research, beginning with 2017 the survey also included two related mass timber panel (MTP) products classified as glueless CLT (massive cross-laminated timber panels bonded with nails and hardwood dowels), MTP hardware manufacturers, construction sites and research laboratories concerned with MTP related research. To-date we have created and populated a unique database covering more than 116 manufacturing plants (including more than 60 CLT lines) across the globe. The database includes information on MTP manufacturers within and outside the MTP industry cluster, including: changes in production capacity and dominant technologies in global MTP production; key success factors and constraints determining the emergence and growth of production; differences in perception of opportunities, risks, challenges and constraints; related business models, strategies, contextual policies, and; the role of innovation systems.
Less detail

27 records – page 1 of 3.