Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
Building acoustics has been identified as one of the key subjects for the success of mass timber in the multi-storey building markets. The project will investigate the acoustical performance of mass timber panels produced in British Columbia. The apparent sound transmission class (ASTC) and impact insulation class (AIIC) of bare mass timber elements as wall and/ or floor elements will be measured through a lab mock-up. It is expected that a database of the sound insulation performance of British Columbia mass timber products will be developed with guidance on optimal acoustical treatments to achieve different levels of performance.
This Report presents the results from experimental studies of the airborne sound transmission of mass timber assemblies, together with an explanation of the calculation procedures to predict the apparent sound transmission class (ASTC) rating between adjacent spaces in a building constructed of mass timber assemblies.
The experimental data which is the foundation for this Report includes the laboratory measured sound transmission loss of wall and floor assemblies constructed of Cross Laminated Timber (CLT), Nail-Laminated Timber (NLT) and Dowel-Laminated Timber (DLT), and the laboratory measured vibration reduction index between assemblies of junctions between CLT assemblies. The presentation of the measured data is combined with the presentation of the appropriate calculation procedures to determine the ASTC rating in buildings comprised of such assemblies along with numerous worked examples.
Several types of CLT constructions are commercially available in Canada, but this study focused on CLT assemblies with an adhesive applied between the faces of the timber elements in adjacent layers, but no adhesive bonding between the adjacent timber elements within a given layer. These CLT assemblies could be called “Face-Laminated CLT Assemblies” but are simply referred to as CLT assemblies in this Report. Another form of CLT assemblies does have adhesive applied between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These assemblies are referred to as “Fully-Bonded CLT Assemblies” in this Report. Because fully-bonded CLT assemblies have different properties than face-laminated CLT assemblies, the sound transmission data and predictions in this Report do not apply to fully-bonded CLT assemblies.
Dowel-laminated timber (DLT) elements consist of lamellae arranged side-by-side that are connected with beech dowels. Due to the glue-free DLT element layup, joints and shear walls potentially suffer from considerable reduction of stiffness and load carrying capacity as metal fasteners inserted perpendicular to the element plane may be placed in gaps between the single lamellae. Tests on typical joints showed that, depending on the fastener diameter, the remaining load carrying capacity of joints in DLT in comparison to joints in solid wood may be only 25%. Tests on DLT shear walls with different sheeting proved that the use of DLT structures as shear walls is only possible if at least one-sided sheeting is used. Cyclic tests on DLT shear walls demonstrated that the DLT construction typology has energy dissipation properties similar to traditional timber frame construction. Analogously, preliminary behaviour factors for DLT buildings evaluated with numerical models were also similar to those for timber frame buildings.
Project contact is Eric Wood at Morrison Hershfield
Summary
The project develops building archetypes, cost data and energy modelling to allow users to cost out mass timber buildings from basic, code-compliant buildings to high-performing, energy-efficient, low-emitting buildings. It will help quantity surveyors, designers, and other decisionmakers undertake business-case development by clarifying cost variables associated with mass-timber construction.
The Cradle-to-Cradle Certification at Platinum level, awarded to products which perfectly embody the principles of Cradle-to-Cradle design, is perhaps one of the most esteemed standards of excellence in sustainability circles. Currently, there is no Platinum-level product which can deliver the classic postand-beam structural system. This literature review investigates the possibility of a timber beam product filling in that gap, and the potential design specifications necessary to do it. Findings suggest that the resin component of current glulam beams harm the Cradle-to-Cradle assessment rating, therefore posing a challenge to find eco-friendly alternative. Potential candidates such as lignin and casein resin are studied, along with the novel technology of welded dowel-laminated timber.
This study illustrates the range of possible wood construction approaches for school buildings that are up to four storeys in height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise.
This study is closely related to the report Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction prepared by GHL Consultants, which explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys, while also imposing limits on the overall floor area. As such, the reader is referred to the GHL report for further information regarding building code compliance (with a particular emphasis on fire protection) for wood school buildings.
Mass timber is a generic name for a broad range of thick and heavy wood products such as cross-laminated timber (CLT), dowel-laminated timber (DLT), nail-laminated timber (NLT), and gluelaminated timber (GLT), among others. So far, vibration-controlled design methods have been developed mostly for CLT floors.
La construction massive en bois est un terme générique qui englobe une grande variété de produits du bois épais et lourds, notamment le bois lamellé-croisé (CLT), le bois lamellé-goujonné (DLT), le bois lamellé-cloué et le bois lamellé-collé (GLT). À ce jour, les méthodes de conception à vibrations contrôlées ont surtout été élaborées pour les planchers en CLT.
The purpose of this guide is to provide an introduction to the concept of encapsulated mass timber construction. This guide provides an overview of encapsulation techniques for mass timber construction, and other related fire protection measures, and summarizes some approved encapsulation materials and application methods and identifies additional requirements for safety during construction. This guide is intended to help architects, engineers and designers by reducing uncertainty and allowing for more confidence in design, as well as providing authorities having jurisdiction and inspectors with a reference for simple design review.