Skip header and navigation

9 records – page 1 of 1.

Behavior of Interlocking Cross-Laminated Timber (ICLT) Shear Walls

https://research.thinkwood.com/en/permalink/catalogue240
Year of Publication
2011
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Block Shear Testing of CLT Panels: An Exploratory Study

https://research.thinkwood.com/en/permalink/catalogue2624
Year of Publication
2011
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Casilla, Romulo
Pirvu, Ciprian
Wang, Brad
Lum, Conroy
Organization
FPInnovations
Year of Publication
2011
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Adhesive
Block Shear Test
Failure
Language
English
Research Status
Complete
Summary
A study was conducted with the primary objective of examining the efficacy of a standard block shear test method to assess the bond quality of cross-laminated timber (CLT) products. The secondary objective was to examine the effect of pressure and adhesive type on the block shear properties of CLT panels. The wood material used for the CLT samples was Select grade nominal 25 x 152-mm (1 x 6-inch) Hem-Fir. Three adhesive types were evaluated under two test conditions: dry and vacuum-pressure-dry (VPD), the latter as described in CSA standard O112.10. Shear strength and wood failure were evaluated for each test condition. Among the four properties evaluated (dry and VPD shear strength, and dry and VPD wood failure), only the VPD wood failure showed consistency in assessing the bond quality of the CLT panels in terms of the factors (pressure and adhesive type) evaluated. Adhesive type had a strong effect on VPD wood failure. The different performance levels of the three adhesives were useful in providing insights into how the VPD block shear wood failure test responds to significant changes in CLT manufacturing parameters. The pressure used in fabricating the CLT panels showed a strong effect on VPD wood failure as demonstrated for one of the adhesives. VPD wood failure decreased with decreasing pressure. Although dry shear wood failure was able to detect the effect of pressure, it failed to detect the effect of adhesive type on the bond quality of the CLT panels. These results provide support as to the effectiveness of the VPD block shear wood failure test in assessing the bond quality of CLT panels. The VPD conditioning treatment was able to identify poor bondline manufacturing conditions by observed changes in the mode of failure, which is also considered an indication of wood-adhesive bond durability. These results corroborate those obtained from the delamination test conducted in a previous study (Casilla et al. 2011). Along with the delamination test proposed in an earlier report, the VPD block shear wood failure can be used to assess the CLT bond quality. Although promising, more testing is needed to assess whether the VPD block shear wood failure can be used in lieu of the delamination test. The other properties studied (shear strength and dry wood failure), however, were not found to be useful in consistently assessing bond line manufacturing quality.
Online Access
Free
Resource Link
Less detail

Checking in CLT Panels: An Exploratory Study

https://research.thinkwood.com/en/permalink/catalogue2625
Year of Publication
2011
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Casilla, Romulo
Lum, Conroy
Pirvu, Ciprian
Wang, Brad
Organization
FPInnovations
Year of Publication
2011
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Moisture
Keywords
Panels
Testing Methods
Surface Checks
Moisture Content
Gaps
Language
English
Research Status
Complete
Summary
A study was conducted with the primary objective of gathering information for the development of a protocol for evaluating the surface quality of cross-laminated timber (CLT) products. The secondary objectives were to examine the effect of moisture content (MC) reduction on the development of surface checks and gaps, and find ways of minimizing the checking problems in CLT panels. The wood materials used for the CLT samples were rough-sawn Select grade Hem-Fir boards 25 x 152 mm (1 x 6 inches). Polyurethane was the adhesive used. The development of checks and gaps were evaluated after drying at two temperature levels at ambient relative humidity (RH). The checks and gaps, as a result of drying to 6% to 10% MC from an initial MC of 13%, occurred randomly depending upon the characteristics of the wood and the manner in which the outer laminas were laid up in the panel. Suggestions are made for minimizing checking and gap problems in CLT panels. The checks and gaps close when the panels are exposed to higher humidity. Guidelines were proposed for the development of a protocol for classifying CLT panels into appearance grades in terms of the severity of checks and gaps. The grades can be based on the estimated dimensions of the checks and gaps, their frequency, and the number of laminas in which they appear.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber (CLT) Plane Structures Under Concentrated Loading from Point Supports - Shear Design including Reinforcements

https://research.thinkwood.com/en/permalink/catalogue1572
Year of Publication
2011
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)

Delamination Testing of CLT Panels: An Exploratory Study

https://research.thinkwood.com/en/permalink/catalogue2626
Year of Publication
2011
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Casilla, Romulo
Pirvu, Ciprian
Wang, Brad
Organization
FPInnovations
Year of Publication
2011
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Adhesive
Bond Quality
Delamination Test
Strength
Language
English
Research Status
Complete
Summary
A study was conducted with the primary objective of examining the efficacy of delamination test using cylindrical core specimens to assess the bond quality of cross laminated timber (CLT) products. A prototype coring drill bit was fabricated to prepare a cylindrical-shaped specimen, the height of which corresponds to the full thickness of the CLT panel. A secondary objective was to examine the effect of pressure, adhesive type, number of plies, and specimen shape on the delamination resistance of CLT panels. The wood material used for the CLT samples was Select grade nominal 1 x 6-inch Hem-Fir boards. Examples of three adhesive types were evaluated, which were designated as A, B, and C. The delamination tests used were as described in CAN / CSA O122-06 and EN 302-2. Cylindrical specimen extracted as core was found satisfactory as a test specimen type for use in delamination testing of CLT product. Its efficacy was comparable to that of a square cross-section specimen. The former is recommended as it can be extracted from thicker panels and from any location in the panel. It would also be more convenient to plug the round hole. Adhesive type had a strong effect on delamination resistance based on the two delamination tests used. Adhesive A exhibited the greatest delamination resistance, followed in decreasing order, by adhesives C and B. It should be noted that no effort was made to find the optimum CLT manufacturing parameters for each type of adhesive. Therefore the relative rankings of the adhesives tested may not be representative. However, for the purposes of this study, the different performance levels from the three adhesives are useful in providing insight into how the proposed delamination test responds to significant changes in CLT manufacturing parameters. Pressure used in fabricating the CLT panel showed a strong effect on delamination resistance as demonstrated for one of the adhesives. Delamination resistance decreased with decreasing pressure. The effect of the number of plies in the CLT panel was dependent upon the type of adhesive, and this was probably related to the adhesive’s assembly time characteristic. These results provide support as to the effectiveness of delamination test in assessing the moisture durability of CLT panels. It was able to differentiate the performance in delamination resistance among different types of adhesives, and able to detect the effect of manufacturing parameters such as pressure and increased number of plies in CLT construction. The test procedure described in CAN / CSA O122-06 appears to be reasonable in the delamination resistance assessment of CLT panels for qualification and quality control testing. Based on the results of the study along with some background information and guidelines, delamination requirements for CLT panels are proposed. The permitted delamination values are greater than those currently specified for laminated and fingerjoined lumber products. This is in recognition of the higher bond line stresses when bonded perpendicular laminations (i.e. CLT) are exposed to the delamination wetting and drying cycles, as opposed to parallel laminations (i.e. glulam or fingerjoints).
Online Access
Free
Resource Link
Less detail

Displacement-Based Seismic Design of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1891
Year of Publication
2011
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems
Walls
Floors
Beams
Columns
Frames

Structural Performance of Box Based Cross Laminated Timber System Used in Floor Applications

https://research.thinkwood.com/en/permalink/catalogue1171
Year of Publication
2011
Topic
Mechanical Properties
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors

Very Tall Wooden Buildings with Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1190
Year of Publication
2011
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Van de Kuilen, Jan-Willem
Ceccotti, Ario
Xia, Zhouyan
He, Minjuan
Publisher
ScienceDirect
Year of Publication
2011
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Design and Systems
Keywords
Concrete Core
Multi-Storey
Language
English
Research Status
Complete
Series
Procedia Engineering
Online Access
Free
Resource Link
Less detail

Wind-Induced Vibration of Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1105
Year of Publication
2011
Topic
Wind
Connections
Material
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

9 records – page 1 of 1.