Skip header and navigation
Did you mean ? Also try xlam, or crosslam.

Refine Results By

239 records – page 1 of 24.

Acoustical Guide: Acoustic Research Report on Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1839
Year of Publication
2018
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Other Materials
Application
Floors
Organization
AcoustiTECH
Editor
David Dompierre
Samuel Garant
Publisher
AcoustiTECH
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Other Materials
Application
Floors
Topic
Acoustics and Vibration
Keywords
Mass Timber
Sound Absorption
Impact Sound Insulation
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Acoustics: Sound Insulation in Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue37
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls

Acoustics Summary: Sound Insulation in Mid-Rise Wood Building

https://research.thinkwood.com/en/permalink/catalogue750
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Acoustic Testing of CLT and Glulam Floor Assemblies

https://research.thinkwood.com/en/permalink/catalogue1863
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Sabourin, Ivan
Organization
National Research Council of Canada
Publisher
Regupol America
Year of Publication
2016
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Transmission Loss
Impact Sound Transmission
Impact Sound Pressure Level
Language
English
Research Status
Complete
Series
Nordic Engineered Wood Report
Online Access
Free
Resource Link
Less detail

Actuarial Contribution to the Understanding of Insurable Risks Related to Non-residential High-rise Buildings in CLT

https://research.thinkwood.com/en/permalink/catalogue2194
Material
CLT (Cross-Laminated Timber)
Organization
Université Laval
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Keywords
insurance contract
Research Status
In Progress
Notes
Contact: Étienne Marceau, Université Laval, etienne.marceau@act.ulaval.ca
Abstract
The objective of this project is to identify the risk factors taken into account in the pricing of an insurance contract for a construction site. This project aims to synthesize the quantitative approaches used in practice and presented in academic research for the pricing of home insurance and commercial insurance. Then, we aim to identify the preventive measures that can be taken to reduce the impact of different perils in the insurance of a construction site in wood or other.
Less detail

Advanced Methods of Encapsulation

https://research.thinkwood.com/en/permalink/catalogue41
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Ranger, Lindsay
Roy-Poirier, Audrey
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Fire
Keywords
Codes
Encapsulation
Type X Gypsum Board
National Building Code of Canada
Tall Wood
Language
English
Research Status
Complete
Abstract
This project aims to support the construction of tall wood buildings by identifying encapsulation methods that provide adequate protection of mass timber elements; the intention is that these methods could potentially be applied to mass timber elements s...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Analytical Models for Balloon-Type CLT Shear Walls

https://research.thinkwood.com/en/permalink/catalogue1877
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Lateral Loads
Shear
Mass Timber
Language
English
Research Status
Complete
Notes
Report is currently not available due to the redevelopment of FPInnovations' publications website.
Abstract
Lack of research and design information for the seismic performance of balloon-type CLT shear walls prevents CLT from being used as an acceptable solution to resist seismic loads in balloon-type mass-timber buildings. To quantify the performance of balloon-type CLT structures subjected to lateral loads and create the research background for future code implementation of balloon-type CLT systems in CSA O86 and NBCC, FPInnovations initiated a project to determine the behaviour of balloon-type CLT construction. A series of tests on balloon-type CLT walls and connections used in these walls were conducted. Analytical models were developed based on engineering principles and basic mechanics to predict the deflection and resistance of the balloon-type CLT shear walls. This report covers the work related to development of the analytical models and the tests on balloon-type CLT walls that the models were verified against.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Brock Commons 18-Storey Building for Vibration and Acoustic performances

https://research.thinkwood.com/en/permalink/catalogue1180
Year of Publication
2018
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Acoustics and Vibration
Keywords
Non-Destructive Testing
Vibration Performance
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Testing
Apparent Sound Transmission Class
Language
English
Research Status
Complete
Notes
Report is currently not available due to the redevelopment of FPInnovations' publications website.
Abstract
This report addresses serviceability issues of tall wood buildings focusing on their vibration and sound insulation performance. The sound insulation and vibration performance may not affect the building’s safety, but affects the occupants’ comfort and the proper operation of the buildings and the function of sensitive equipment...
Online Access
Payment Required
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Notes
Report is currently not available due to the redevelopment of FPInnovations' publications website.
Abstract
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies...
Online Access
Payment Required
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Notes
Report is currently not available due to the redevelopment of FPInnovations' publications website.
Abstract
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community. ...
Online Access
Payment Required
Resource Link
Less detail

239 records – page 1 of 24.