Skip header and navigation

7 records – page 1 of 1.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre

https://research.thinkwood.com/en/permalink/catalogue1182
Year of Publication
2018
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Roofs
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Roofs
Topic
Serviceability
Moisture
Keywords
Vertical Movement
Moisture Content
Temperature
Relative Humidity
Monitoring
Language
English
Research Status
Complete
Summary
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying too slowly after they become wet during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity for non-destructive...
Online Access
Free
Resource Link
Less detail

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre: Instrumentation and First Year's Performance

https://research.thinkwood.com/en/permalink/catalogue102
Year of Publication
2015
Topic
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Serviceability
Keywords
Differential Movement
Long-term
Moisture
Plywood
Roofs
Shrinkage
Tall Wood
Vertical Movement
Language
English
Research Status
Complete
Summary
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying slowly after they are wetted during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity...
Online Access
Free
Resource Link
Less detail

In-Situ Testing of the Wood Innovation and Design Centre for Serviceability Performance

https://research.thinkwood.com/en/permalink/catalogue1183
Year of Publication
2018
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Acoustics and Vibration
Keywords
Vibration Performance
Sound Insulation
Natural Frequencies
Damping Ratios
Ambient Vibration Testing
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Three performance attributes of a building for serviceability performance are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies...
Online Access
Free
Resource Link
Less detail

Preliminary Assessment of Hygrothermal Performance of Cross-Laminated Timber Wall Assemblies Using Hygrothermal Models

https://research.thinkwood.com/en/permalink/catalogue2628
Year of Publication
2010
Topic
Moisture
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Wang, J.
Baldracchi, P.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Design and Systems
Serviceability
Keywords
Hygrothermal
Moisture Performance
Rainscreen
Language
English
Research Status
Complete
Summary
Preliminary simulation was carried out using hygIRC and WUFI, both 1-D hygrothermal models, to analyze moisture performance of rainscreened wood-frame walls and cross-laminated timber (CLT) walls for the climates in Vancouver and Calgary. The major results are as follows. In order to provide baseline knowledge, preliminary comparisons between hygIRC and WUFI were conducted to investigate the effects of climate data, wall orientations and rain intrusion on the performance of the rainscreened wood-frame walls based on Vancouver’s climate. hygIRC tended to produce almost constant moisture content (MC) of the plywood sheathing throughout a year but WUFI showed greater variations, particularly when the ventilation of the rainscreen cavity was neglected. Rainscreen cavity ventilation provided dramatic drying potentials for wall assemblies based on the WUFI simulation. hygIRC indicated that east-facing walls had the highest moisture load, but the differences between orientations seemed negligible in WUFI when the rainscreen cavity ventilation was taken into account. When 1% of wind-driven rain was simulated as an additional moisture load, hygIRC suggested that the rainscreen walls could not dry out in Vancouver, WUFI, however, indicated that they could dry to a safe MC level in the summer. The discrepancies in material property data between the two models and between different databases in WUFI (even for the same wood species) were found to be very large. In terms of wood sorption data, large differences existed at near-saturated RH levels. This is a result of using pressure-plate/membrane methods for measuring material equilibrium moisture content (EMC) under high RH conditions. The EMC of wood at near-100% RH conditions measured with these methods can be higher than 200%, suggesting wood in construction would decay without liquid water intrusion or severe vapour condensation. The pressure-plate/membrane methods also appeared to be highly species-dependent, and have higher EMC at a certain RH level for less permeable species, from which it is relatively difficult to remove water during the measurement. The hygrothermal simulation in this work suggested that such a species bias caused by testing methods could put impermeable species (most Canadian species) at a disadvantage to permeable species like southern pine during related durability design of building assemblies. In terms of using CLT for construction in Vancouver and Calgary, the WUFI simulations suggested that the use of less permeable materials such as EPS (expanded polystyrene insulation), XPS (extruded polystyrene insulation), self-adhered bituminous membrane and polyethylene in wall assemblies reduced the ability of the walls to dry. On the other hand, permeable assemblies such as those using relatively permeable insulation like semi-rigid mineral wool (rock wool) as exterior insulation, instead of less permeable exterior insulation materials, would help walls dry. The simulation also suggested that using CLT products with initially low MC would significantly reduce moisture-related risks, which indicated the importance of protecting CLT and avoiding wetting during transportation and construction. In addition, the simulation found that indoor relative humidity (RH) conditions generated by the indoor RH prediction models included in hygIRC and WUFI varied greatly under the same basic climate and building conditions. The intermediate method specified in ASHRAE Standard 160 P resulted in long periods of saturated RH conditions throughout a year for the Vancouver climate, which may not be representative of ordinary residential buildings in Vancouver. The simulation in this study is preliminary and exploratory. It would be arbitrary to recommend one model over the other based on this report or use the simulation results directly for CLT wall assembly design without consultation with building science specialists. However, this work revealed more opportunities for close collaborations between the wood science and the building science communities. More work should be carried out to develop appropriate testing methods and assemble material property data for hygrothermal simulation of wood-based building assemblies. Model improvement and field verification are also strongly recommended, particularly for new building systems such as CLT constructions.
Online Access
Free
Resource Link
Less detail

Serviceability of Next-Generation Wood Buildings: Sound Insulation Performance of Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue402
Year of Publication
2014
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Apparent Sound Insulation Class
Field Sound Insulation Class
Apparently Sound Transmission Class
Field Sound Transmission Class
Language
English
Research Status
Complete
Summary
This report documents apparent/field impact insulation class (AIIC/FIIC) ratings and apparent/field sound transmission class (ASTC/FSTC) ratings for a large number of light-frame wood-joisted floors, cross-laminated timber floors (CLT), massive glulam floors, and a wood-concrete composite floor...
Online Access
Free
Resource Link
Less detail

Treatability of Cross Laminated Timber With a Low Moisture Uptake Surface-Applied Penetrating Process for Applying Termiticides

https://research.thinkwood.com/en/permalink/catalogue2611
Year of Publication
2014
Topic
Serviceability
Material
CLT (Cross-Laminated Timber)
Author
Stirling, Rod
Morris, Paul
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Serviceability
Keywords
Treated Wood
Termites
Panels
Preservative Treatment
Language
English
Research Status
Complete
Summary
Cross-laminated timber (CLT) may require preservative treatment in markets with severe termite hazards. Given the size of CLT panels, conventional pressure treatment would not be feasible. We therefore assessed the treatability of CLT panels with an alternative low moisture uptake surface-applied penetrating process for applying termiticides. Hem-fir panels were selected for the initial tests on the grounds that western hemlock and amabilis fir are relatively treatable. Nine test panels were dip treated and stored for 7, 14, or 21 day activation periods. Borate retention ranged from 1.2 to 6.5 kg/m3 and penetration ranged from 3 to 9 mm. Longer activation periods did not result in improved penetration. Greater penetration would likely be needed to meet performance-based standards.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.