Skip header and navigation

27 records – page 1 of 3.

Apparent Sound Insulation in Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1276
Year of Publication
2017
Topic
Acoustics and Vibration
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Assessment of Connections in Cross-Laminated Timber Buildings Regarding Structural Robustness

https://research.thinkwood.com/en/permalink/catalogue1948
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Assessment of Disproportionate Collapse for Multi Storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1664
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Mpidi Bita, Hercend
Currie, Neil
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Rotational Stiffness
Multi-Storey
Ductility
Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3725-3733
Summary
This paper investigates the risk of disproportionate collapse following extreme loading events. The methodology mimics a sudden removal of a loadbearing wall of a twelve-storey CLT building. The ductility-demand from the dynamic simulation is checked against the ductility supplied by the structural components and their connections...
Online Access
Free
Resource Link
Less detail

Behavior of Interlocking Cross-Laminated Timber (ICLT) Shear Walls

https://research.thinkwood.com/en/permalink/catalogue240
Year of Publication
2011
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Behaviour of Multi-Storey Cross-Laminated Timber Buildings Under Lateral Loading

https://research.thinkwood.com/en/permalink/catalogue2715
Year of Publication
2020
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Hughes, Claire
Publisher
Queen's University Belfast
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Design and Systems
Keywords
Lateral Loading
Tall Wood
Tall Timber Buildings
Connections
Monotonic Loading Tests
Constant Vertical Load
Wall Systems
Experimental Tests
Analytical Approach
Multi-Storey
Language
English
Research Status
Complete
Summary
In response to the global drive towards sustainable construction, CLT has emerged as a competitive alternative to other construction materials. CLT buildings taller than 10-storeys and CLT buildings in regions of moderate to high seismicity would be subject to higher lateral loads due to wind and earthquakes than CLT buildings which have already been completed. The lack of structural design codes and limited literature regarding the performance of CLT buildings under lateral loading are barriers to the adoption of CLT for buildings which could experience high lateral loading. Previous research into the behaviour of CLT buildings under lateral loading has involved testing of building components. These studies have generally been limited to testing wall systems and connections which replicate configurations at ground floor storeys in buildings no taller than three storeys. Consequently, to develop the understanding of the performance of multi-storey CLT buildings under lateral loading, the performance of wall systems and connections which replicate conditions of those in above ground floor storeys in buildings taller than three storeys were experimentally investigated. The testing of typical CLT connections involved testing eighteen configurations under cyclic loading in shear and tension. The results of this experimental investigation highlighted the need for capacity-based design of CLT connections to prevent brittle failure. It was found that both hold down and angle bracket connections have strength and stiffness in shear and tension and by considering the strength of the connections in both directions, more economical design of CLT buildings could be achieved. The testing of CLT wall systems involved testing three CLT wall systems with identical configurations under monotonic lateral load and constant vertical load, with vertical loads replicating gravity loads at storeys within a 10-storey CLT building. The results show that vertical load has a significant influence on wall system behaviour; varying the vertical load was found to vary the contribution of deformation mechanisms to global behaviour within the elastic region, reinforcing the need to consider connection design at each individual storey. As there are still no structural design codes for CLT buildings, the accuracy of analytical methods presented within the literature for predicting the behaviour of CLT connections and wall systems under lateral loading was assessed. It was found that the analytical methods for both connections and wall systems are highly inaccurate and do not reflect experimentally observed behaviour.
Online Access
Free
Resource Link
Less detail

CLT Buildings Laterally Braced with Core and Perimeter Walls

https://research.thinkwood.com/en/permalink/catalogue1663
Year of Publication
2016
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Polastri, Andrea
Loss, Cristiano
Pozza, Luca
Smith, Ian
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Multi-Storey
Numerical Models
X-RAD
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3706-3715
Summary
In this work the behaviour of hybrid multi-storey buildings braced with Cross-Laminated-Timber (CLT) cores and shear-walls is studied based on numerical analyses. Two procedures for calibrating numerical models are adopted and compared to test data and application of provisions in current design codes. The paper presents calibration of...
Online Access
Free
Resource Link
Less detail

CLT-Lightweight Concrete Composite Beam with Adhesive Connection

https://research.thinkwood.com/en/permalink/catalogue1701
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Beams
Author
Kanócz, Ján
Bajzecerová, Viktória
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Adhesives
Lightweight Concrete
Deformation
Vibration
Load Carrying Capacity
Shear
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4378-4385
Summary
In the presented paper, results of theoretical and experimental investigation of timber-concrete composite members with adhesive connection are described. For the timber part of composite beams Cross Laminated Timber and for concrete part lightweight concrete was used. For the composite connection special adhesive to bounding wet...
Online Access
Free
Resource Link
Less detail

Conventional and Novel Timber Steel Hybrid Connections: Testing, Performance and Assessment

https://research.thinkwood.com/en/permalink/catalogue187
Year of Publication
2015
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Cross-Laminated Timber Shear Connections with Double-Angled Self-Tapping Screw Assemblies

https://research.thinkwood.com/en/permalink/catalogue544
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Hossain, Afrin
Danzig, Ilana
Tannert, Thomas
Publisher
American Society of Civil Engineers
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Shear Resistance Performance
Shear Connection
Quasi-Static
Reverse Cyclic Loading
Lateral Load
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
The research presented in this paper examines the shear resistance performance of self-tapping screws (STS) in three-ply cross-laminated timber (CLT) panels. Specifically, the feasibility of using innovative STS assemblies with double inclination of fast...
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Shear Walls in Balloon Construction: Seismic Performance of Steel Connections

https://research.thinkwood.com/en/permalink/catalogue2413
Year of Publication
2019
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls

27 records – page 1 of 3.