Skip header and navigation

10 records – page 1 of 1.

Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach

https://research.thinkwood.com/en/permalink/catalogue1209
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Liu, Ying
Guo, Haibo
Sun, Cheng
Chang, Wen-Shao
Publisher
MDPI
Year of Publication
2016
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Life-Cycle Assessment
Cradle-to-Grave
China
Cold Regions
Severe Cold Regions
Energy Consumption
Mid-Rise
Residential
Language
English
Research Status
Complete
Series
Sustainability
Summary
Timber building has gained more and more attention worldwide due to it being a generic renewable material and having low environmental impact. It is widely accepted that the use of timber may be able to reduce the embodied energy of a building. However, the development of timber buildings in China...
Online Access
Free
Resource Link
Less detail

A Comparative Cradle-To-Gate Life Cycle Assessment of Mid-Rise Office Building Construction Alternatives: Laminated Timber or Reinforced Concrete

https://research.thinkwood.com/en/permalink/catalogue52
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Author
Robertson, Adam
Lam, Frank
Cole, Raymond
Publisher
MDPI
Year of Publication
2012
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Topic
Energy Performance
Environmental Impact
Keywords
Concrete
Embodied Carbon
Life-Cycle Assessment
Mid-Rise
National Building Code of Canada
NBCC
North America
Office Buildings
Language
English
Research Status
Complete
Series
Buildings
ISSN
2075-5309
Summary
The objective of this project was to quantify and compare the environmental impacts associated with alternative designs for a typical North American mid-rise office building. Two scenarios were considered; a traditional cast-in-place, reinforced concrete frame and a laminated timber hybrid design, which utilized engineered wood products (cross-laminated timber (CLT) and glulam). The boundary of the quantitative analysis was cradle-to-construction site gate and encompassed the structural support system and the building enclosure. Floor plans, elevations, material quantities, and structural loads associated with a five-storey concrete-framed building design were obtained from issued-for-construction drawings. A functionally equivalent, laminated timber hybrid design was conceived, based on Canadian Building Code requirements. Design values for locally produced CLT panels were established from in-house material testing. Primary data collected from a pilot-scale manufacturing facility was used to develop the life cycle inventory for CLT, whereas secondary sources were referenced for other construction materials. The TRACI characterization methodology was employed to translate inventory flows into impact indicators. The results indicated that the laminated timber building design offered a lower environmental impact in 10 of 11 assessment categories. The cradle-to-gate process energy was found to be nearly identical in both design scenarios (3.5 GJ/m2), whereas the cumulative embodied energy (feedstock plus process) of construction materials was estimated to be 8.2 and 4.6 GJ/m2 for the timber and concrete designs, respectively; which indicated an increased availability of readily accessible potential energy stored within the building materials of the timber alternative.
Online Access
Free
Resource Link
Less detail

Comparison of Environmental Performance of a Five-Storey Building Built with Cross-Laminated Timber and Concrete

https://research.thinkwood.com/en/permalink/catalogue65
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Expanding Opportunities for Mid-Rise Buildings in Chile through the Application of Timber Panel Systems

https://research.thinkwood.com/en/permalink/catalogue193
Year of Publication
2012
Topic
Market and Adoption
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Force Modification Factors for Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue363
Year of Publication
2012
Topic
Seismic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Popovski, Marjan
van de Lindt, John
Organization
FPInnovations
Year of Publication
2012
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Market and Adoption
Keywords
Performance-Based Seismic Design
Canada
US
Force Modification Factors
Mid-Rise
Language
English
Research Status
Complete
Summary
European experience shows that Cross-Laminated Timber (CLT) can be competitive in mid-rise and high-rise buildings. Although this system has not been used to the same extent so far in North America, it can be viable wood structural solution for the shift towards sustainable...
Online Access
Free
Resource Link
Less detail

Guide for Wind-Vibration Design of Wood-Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue379
Year of Publication
2012
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2012
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Wind
Keywords
Mid-Rise
High-Rise
Dynamic Properties
Ambient Vibration Tests
Language
English
Research Status
Complete
Summary
It is not surprising to see a rapid growth in the demand for mid- to high-rise buildings. Traditionally, these types of buildings have been dominated by steel and concrete. This trend creates a great opportunity for wood to expand its traditional single and low-rise multi-family building market to the growing mid- to high-rise building market. The significance and importance of wood construction to environmental conservation and the Canadian economy has been recognized by governments, the building industry, architects, design engineers, builders and clients. It is expected that more and more tall wood frame buildings of 6- to 8-storeys (or taller) will be constructed in Canada. Before we can push for use of wood in such applications, however, several barriers to wood success in its traditional and potential market places have to be removed. Lack of knowledge of the dynamic properties of mid- to high-rise wood and hybrid wood buildings and their responses to wind, and absence of current guidelines for wind vibration design of mid- to high-rise wood and hybrid wood buildings are examples of such barriers.
Online Access
Free
Resource Link
Less detail

Improving Thermal Efficiency in Lightweight Construction: Mass Timber as Thermal Mass

https://research.thinkwood.com/en/permalink/catalogue1915
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Roofs
Author
Dewsbury, Mark
Publisher
Forest & Wood Products Australia
Year of Publication
2016
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Roofs
Topic
Energy Performance
Keywords
Thermal Efficiency
Lightweight
Low-Rise
Mid-Rise
Low-Energy
Language
English
Research Status
Complete
Series
Market Access, Project Number: PNA289-1213a
ISBN
978-1-925213-40-9
Online Access
Free
Resource Link
Less detail

(Mass) Timber: Structurally Optimized Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1433
Year of Publication
2016
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Numerical Study of Pin-Supported Cross-Laminated Timber (CLT) Shear Wall System Equipped with Low-Yield Steel Dampers

https://research.thinkwood.com/en/permalink/catalogue1267
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls

Wood Cityscapes: Mass Timber Office Building

https://research.thinkwood.com/en/permalink/catalogue2300
Year of Publication
2016
Topic
Design and Systems
Cost
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
General Application
Wood Building Systems
Author
Hovhannisyan, Mariam
Publisher
University of Washington
Year of Publication
2016
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
General Application
Wood Building Systems
Topic
Design and Systems
Cost
Environmental Impact
Keywords
Office Buildings
Mid-Rise
Cost
Schedule
Greenhouse gas emissions
Prototype
Language
English
Research Status
Complete
Summary
Most office building construction relies on steel and concrete for mid-high rise office building applications. The primary goal of this thesis is to understand the implications of CLT and mass timber construction systems for mid-high rise office buildings in Seattle by developing a prototypical office building located on a specific site. This research thesis will focus on comparing this prototypical mass timber office building design to the same/similar design using industry standard construction materials for Seattle. The criteria for comparison will include code, cost, schedule and greenhouse gas emissions.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.