Skip header and navigation

7 records – page 1 of 1.

Conventional and Novel Timber Steel Hybrid Connections: Testing, Performance and Assessment

https://research.thinkwood.com/en/permalink/catalogue187
Year of Publication
2015
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Coupling Effects of CLT Connections Under Bi-axial Loading

https://research.thinkwood.com/en/permalink/catalogue2285
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Liu, Jingjing
Publisher
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Connections
Keywords
Shear Force
Tension
Mid-Rise
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Examination of the Lateral Resistance of Cross-Laminated Timber in Panel-Panel Connections

https://research.thinkwood.com/en/permalink/catalogue2302
Year of Publication
2015
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Richardson, Benjamin Lee
Publisher
Virginia Tech
Year of Publication
2015
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Connections
Keywords
Lateral Resistance
Shear Resistance
Full Scale
Panels
Small Scale
Steel Connections
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Experimental Investigations of Shear Connections with Self-Tapping-Screws for Cross-Laminated-Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2295
Year of Publication
2019
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application

Non-Uniformly Distributed Compression Perpendicular to the Grain in Steel-CLT Connections: Experimental and Numerical Analysis of Bearing Capacity and Displacement Behaviour

https://research.thinkwood.com/en/permalink/catalogue2363
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Ncube, Noah
Sabaa, Stephen
Publisher
Linnaeus University
Year of Publication
2019
Country of Publication
Sweden
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Connections
Keywords
Compression
Perpendicular to the Grain
Non-Uniformly Distributed
Finite Element
Load Configuration Factor
Steel Connections
Load
Language
English
Research Status
Complete
Summary
Previous studies have mainly focused on the behaviour of timber under uniformly distributed compression perpendicular to the grain (CPG) loads. However, there are many practical applications in which timber is loaded by non-uniformly distributed CPG loads. Different design and test codes like the Eurocode 5 (EC5), DIN 1052:2004, ASTM D143- 94 and EN-408:2010 only account for load configurations where timber is subjected to uniformly distributed loads. For specific uniformly distributed load (UDL) configurations the bearing capacity of timber (solid softwood timber or Glulam) in compression is adapted by using a load configuration factor (kc,90) according to EC5, the European code for design of timber structures. EC5 has no guidelines for cross-laminated timber (CLT) under UDL with the exception of the Austrian National Regulations for EC5. In this work, an experimental and numerical study on the bearing capacity and displacement behaviour of CLT subjected to non-uniformly distributed loading (NuDL) is conducted on eight different load configurations. A steel-CLT connection in which the CLT is partially loaded is used in this study. Finite element modelling, performed using the commercial software Abaqus CAE is used as the numerical simulation of the experimental study and is validated by experimental results. Load configuration factors (kc,90) from experimental results are compared with values from the Swedish CLT handbook (KL-Trähandbok). The outcome of the study shows that load configuration factor for NuDL cases is higher than for UDL cases. Hence, for same load configurations a lower CPG strength is required in NuDL than in UDL. Moreover, numerical results feature overall good congruence with the elastic phase of the experiments and have the potential to augment experiments in further understanding other complex steel-CLT connections
Online Access
Free
Resource Link
Less detail

Numerical and Experimental Investigations of Connection for Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue213
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Numerical Modeling of Mass Timber Connections

https://research.thinkwood.com/en/permalink/catalogue2283
Year of Publication
2018
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Hollenbeck, Sean
Publisher
Oregon State University
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Connections
Keywords
Finite Element Analysis
Abaqus
Single Nail Model
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.