Skip header and navigation

7 records – page 1 of 1.

Blast Testing of Loaded Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1234
Year of Publication
2018
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Weaver, Mark
Newberry, Charles
Podesto, Lisa
O’Laughlin, Casey
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2018
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Design and Systems
Keywords
Blast Tests
Airblast Loads
Axial Load
Panels
Load Distribution
Quasi-Static
Language
English
Conference
Structures Conference 2018
Research Status
Complete
Notes
April 19–21, 2018, Fort Worth, Texas
Summary
Results from a series of blast tests performed in October 2016 on three two-story, single-bay cross-laminated timber (CLT) structures demonstrated the ability of CLT construction to resist airblast loads in a predictable fashion. These tests were performed on structures without superimposed load to limit inertial resistance. Subsequently, a follow-on series of tests...
Online Access
Payment Required
Resource Link
Less detail

The Environmental Impact of Reused CLT Panels: Study of a Single-Storey Commercial Building In Japan

https://research.thinkwood.com/en/permalink/catalogue2377
Year of Publication
2018
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Passarelli, Rafael
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Energy Performance
Design and Systems
Keywords
Global Warming Potential
Commercial
Panels
Carbon
Design for Reuse
Timber Cascade
Life-Cycle Assessment
LCA
Construction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The study investigates the environmental benefits of reusing Cross Laminated Timber (CLT) panels. The Global Warming Potential (GWP) of a single-stored Coffee shop built in 2016 in Kobe city was calculated, considering different CLT reuse ratios, forest land-use and material substitution possibilities. The results showed that as the rate of reused CLT panel increases the total GWP decreases. Moreover, in all cases, the option with smallest GWP is when the surplus wood is used for carbon storage in the forest, revealing the importance of a growing forest for increasing the environmental benefits of timber utilisation. The results suggest the systematic reuse of CLT panels offers a possibility to increase the carbon stock of Japanese Cedar plantation forests and further mitigate the environmental impact of construction.
Online Access
Free
Resource Link
Less detail

Evaluation of the Bonding Quality of E. grandis Cross-Laminated Timber Made With a One-Component Polyurethane Adhesive

https://research.thinkwood.com/en/permalink/catalogue2369
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Dugmore, Michael
Publisher
Stellenbosch University
Year of Publication
2018
Country of Publication
South Africa
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Keywords
Polyurethane
Panels
Bond Performance
Bond Quality
Durability Assessment
Language
English
Research Status
Complete
Summary
Eucalyptus grandis is South Africa‘s most important commercial hardwood species. The availability of E. grandis and its fast growth rate creates the opportunity to explore its uses further. Cross-laminated timber (CLT) is a prefabricated multilayer engineered panel product made of at least three layers, with the grain direction of some or all of the consecutive layers orthogonally orientated. In order to add value to E. grandis, reduce the export of low-cost chips, increase the profit margins of local plantation owners and create jobs, the development of E. grandis CLT in South Africa may be an option. There is concern among some researchers that the bonding quality evaluation tests proposed by CLT standards have been developed for glulam and are too severe for CLT. These researchers proposed that further analysis and possibly even revision of the test methods should be considered. There is also a need to evaluate the mechanical properties of CLT panels made of E. grandis to completely understand the structural performance of these panels, including their bond quality and durability, and therefore be able to rely on E. grandis CLT as a construction material. The objectives of this study were: . To evaluate the face-bonding quality of CLT panels from E. grandis timber bonded with a one component polyurethane resin; . To determine the influence of material and processing parameters on the face-bonding quality of CLT manufactured from E. grandis timber bonded with a one component polyurethane resin; . To analyse different testing methods for evaluating the face-bonding quality of CLT. The design for this experiment consisted of eight groups with different combinations of parameters for density, grooves and pressure per group. Four different testing methods were used to evaluate the face-bonding quality of CLT panels from E. grandis and to determine the effect of parameters on face-bonding quality: A delamination test on 100 x 100 mm block specimens (Test A), a shear test on 40 x 40 mm specimens (Test B), a shear test on 40 x 40 mm specimens with grain direction 45° to load direction (Test C) and a combined delamination and shear test on 70 x 70 mm specimens with grain direction 45° to load direction (Test D). Results of the statistical analysis indicated that E. grandis CLT made with 1C-PUR adhesive can obtain excellent face-bonding quality using a clamping pressure of 0.7 MPa and with no stress relief grooves present. All samples passed the shear test (Test B) which is the reference test method proposed by EN 16351 (2015). It was found that a strength component and durability component will be an advantage when testing the bond quality of CLT. Shear tests at 45° to the load direction did not completely eliminate the rolling shear effect. The combined delamination and shear test (Test D), seems to have potential as a good test for bond quality since it is a combination of a durability and shear strength test. There are still questions about the relative advantages of specific test methods for bond quality, especially on the effect of rolling shear. Further work should focus on this aspect and the use of stress models might be a way of gaining further insights.
Online Access
Free
Resource Link
Less detail

Exploring Cross-Laminated Timber Use for Temporary Military Structures: Ballistic Considerations

https://research.thinkwood.com/en/permalink/catalogue2371
Year of Publication
2018
Topic
Design and Systems
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sanborn, Kathryn
Publisher
Georgia Institute of Technology
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Ballistic Resistance
Panels
Military Structures
Blast Analysis Tool
Spruce-Pine-Fir
Southern Pine
SPF
Language
English
Research Status
Complete
Summary
The design and construction of temporary military structures has changed little since World War II. While these structures are lightweight and rapidly deployable, they require a sizeable workforce to construct and provide minimal ballistic and blast protection for occupants. Cross-laminated timber (CLT) is a relatively new prefabricated engineered wood product that is strong, stiff, quick to build, and has the potential to offer inherent ballistic and blast resistance compared to traditional wood products. The orthotropic nature of CLT coupled with the energy absorbing capacity of the thick wood panels warrant further investigation into the viability of CLT for temporary military structures. To that end, the research presented in this thesis seeks to better understand the ballistic and blast response of CLT panels and to develop evaluation criteria for the use of CLT in temporary military structures. Specific areas of investigation included: 1) experimental testing of the ballistic resistance of CLT panels, conducting in conjunction with U.S. Army laboratories in Aberdeen Proving Grounds, Maryland and Vicksburg, Mississippi; 2) the design, prototyping, and experimental testing of enhanced CLT panels to further improve ballistic performance; 3) a qualitative analysis of CLT panels under ballistic impact resistance mechanisms; 4) the development of a CLT blast analysis tool to predict the elastic response of CLT to blast loadings; and 5) the development of a simplified tool to identify evaluation criteria for temporary military structure material selection, including conventional materials as well as CLT. Specimens in this research consisted of commercially produced Spruce-Pine-Fir CLT as well as Southern Pine CLT specimens fabricated specifically for this research. Ballistic testing of both types of conventional CLT indicate that the material’s inherent penetration resistance is significantly greater than that of dimension lumber and plywood used in current common temporary military structures. The testing shows that current U.S. military design guidelines (UFC 4-023-07), used for determining required wood thickness based on ballistic threat, under predicts the ballistic performance of CLT. From testing and analysis, the thesis develops updated equations for predicting the thickness of CLT required for ballistic protection. A qualitative analysis of ballistic specimens identified local failure modes in the CLT and links the observed damage the anisotropic material properties, grading, and defects in sawn timbers. Enhanced CLT specimens were fabricated using various hardening materials including thin metal plates and gratings, polymer-based armors, and fiber-reinforced epoxy matrix panels. The enhanced CLTs were evaluated based on ease of production, ballistic resistance as compared to conventional CLT, and cost-benefit analysis. The shear analogy method was incorporated into a single-degree-of-freedom blast analysis to predict the response of different types and sizes of CLT panels under blast loads within the elastic regime. The tool was validated using field data from low-level live blast tests and showed good agreement with the field data. Finally, tailored evaluation criteria for comparative assessment of construction materials for use in temporary military structures – considering issues of cost, the logistics of in-theater deployment, energy consumption and force protection were developed and applied through using the AHP decision-making process.
Online Access
Free
Resource Link
Less detail

Group Effect for Self-Tapping-Screws in CLT Subjected to Shear and Axial Loads

https://research.thinkwood.com/en/permalink/catalogue1975
Year of Publication
2018
Topic
Design and Systems
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Japan Kobe Earthquake Shake Table Simulation – Earthquake Performance of Multi-storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1849
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Quenneville, Pierre
Morris, Hugh
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Earthquake
Shake Table Test
Panels
Language
English
Research Status
Complete
Series
New Zealand Timber Design Journal
Online Access
Free
Resource Link
Less detail

Timber Multi-Level Buildings to 20 Levels Based on a Central Core of Integrated CLT Panels

https://research.thinkwood.com/en/permalink/catalogue1804
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Chapman, John
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Keywords
Panels
Multi-Storey
Integrated Elements
Structural Design
Tall Wood
Language
English
Research Status
Complete
Summary
This research investigates a new structural system based on a central core of CLT (cross-laminated timber) panels to provide more useful multi-level timber buildings that are taller and with open floor areas. Because pinus radiata is a suitable timber for the manufacture of CLT panels, the system has the potential to add value...
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.