Skip header and navigation

25 records – page 1 of 3.

Affordances of Complexity: Evaluation of a Robotic Production Process for Segmented Timber Shell Structures

https://research.thinkwood.com/en/permalink/catalogue1913
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shell Structures
Author
Krieg, Oliver David
Bechert, Simon
Groenewolt, Abel
Horn, Rafael
Knippers, Jan
Menges, Achim
Publisher
Intergrated Digital Conference (INDICO)
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shell Structures
Topic
Design and Systems
Keywords
Robotic Fabrication
Computational Design
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23, 2018, Seoul, Republic of Korea
Online Access
Free
Resource Link
Less detail

Compression Perpendicular to Grain Behavior for the Design of a Prefabricated CLT Facade Horizontal Joint

https://research.thinkwood.com/en/permalink/catalogue1540
Year of Publication
2016
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Author
Gasparri, Eugenia
Lam, Frank
Liu, Yingyang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Connections
Design and Systems
Keywords
Envelope
Joints
Self-Tapping Screws
Finite Element Analysis
Prefabricated
Vertical Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1088-1098
Summary
The present work aims to define horizontal joint dimension tolerances for newly proposed prefabricated façade systems for applications in tall cross laminated timber (CLT) buildings based on the compression perpendicular to grain characteristics of the component. This requires a thorough understanding of structural settlement under vertical...
Online Access
Free
Resource Link
Less detail

Developing a Large Span Timber-based Composite Floor System for Highrise Office Buildings

https://research.thinkwood.com/en/permalink/catalogue2549
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Topic
Design and Systems
Keywords
Large Span
Prefabrication
High-Rise
Office Buildings
Tall Timber Buildings
Research Status
In Progress
Notes
Project contact is Frank Lam at the University of British Columbia
Summary
The objective of this project is to develop a large span timber-based composite floor system for the construction of highrise office buildings. This prefabricated floor system could span over 10 m under regular office occupation load, and its use will expedite the construction significantly, converting to multi-million financial savings in a typical 40+ story project, besides the impact on reducing carbon footprint and enhancing living experience.
Less detail

Energy Based Seismic Design of a Multi-Storey Hybrid Building: Timber-Steel Core Walls

https://research.thinkwood.com/en/permalink/catalogue1271
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems

Experimental Investigation of Connection for the FFTT, A Timber-Steel Hybrid System

https://research.thinkwood.com/en/permalink/catalogue269
Year of Publication
2013
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems

Feasibility of Cross-Laminated Timber Cores for the UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1905
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases

Feasibility Study of a Wood-Concrete Hybrid Super Tall Building and Optimization of its Wind-Induced Behaviour

https://research.thinkwood.com/en/permalink/catalogue1902
Year of Publication
2018
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Frames
Walls
Shafts and Chases

Feasibility Study of Using Cross-Laminated Timber Core for the UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1262
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems

High-Capacity Hold-Down for Tall Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1529
Year of Publication
2016
Topic
Design and Systems
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Zhang, Xiaoyue
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Seismic
Mechanical Properties
Keywords
Holz-Stahl-Komposit
Hold-Down
Seismic Load
Strength
Stiffness
Ductility
Failure Mechanisms
Quasi-Static
Monotonic Loading
Reverse Cyclic Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 725-732
Summary
The structural use of wood in North America is dominated by light wood-frame construction used in low-rise and – more recently – mid-rise residential buildings. Mass timber engineered wood products such as laminatedveneer-lumber and cross-laminated timber (CLT) panels...
Online Access
Free
Resource Link
Less detail

Hybrid Light Wood Frame Structures Connected to a CLT Core 2020

https://research.thinkwood.com/en/permalink/catalogue2542
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shafts and Chases
Wood Building Systems
Organization
University of Victoria
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shafts and Chases
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Pinching Behavior
Ductility
Load Distribution
Energy Dissipation
Research Status
In Progress
Notes
Project contact is Lina Zhou at the University of Victoria
Summary
The general objective of this research is to get a better understanding of the structural performance of hybrid building systems in which a light wood frame structure is structurally attached to a mass timber core with a ductile connection system. Specific objectives of this research are: 1. To investigate the pinching effect on the seismic performance of timber structures. 2. To investigate the load distribution between the two sub-systems in a hybrid building, and how will it be affected by the characteristics of inter-connections. 3. To explore the relationship of ductility and energy dissipation capacity among joints, shear walls and the whole buildings.
Less detail

25 records – page 1 of 3.