Skip header and navigation
Did you mean ? Also try xlam, or crosslam.

69 records – page 1 of 7.

Performance of Cross-Laminated Timber as a Residential Building Material Subject to Tornado Events

https://research.thinkwood.com/en/permalink/catalogue2523
Year of Publication
2020
Topic
Wind
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Decision-Making for Cross-Laminated Timber Modular Construction Logistics Using Discrete-Event Simulation

https://research.thinkwood.com/en/permalink/catalogue2722
Year of Publication
2020
Topic
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Abiri, Bahar
Publisher
Oregon State University
Year of Publication
2020
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Site Construction Management
Keywords
Modular Construction
Discrete-Event Simulation
Language
English
Research Status
Complete
Summary
The two primary considerations for construction project management are budget and time management. Modular construction has the potential to improve construction productivity by minimizing time and costs while improving safety and quality. Cross-Laminated Timber (CLT) panels are beneficial for modular construction due to the high level of prefabrication, adequate dimensional stability, and good mechanical performance that they provide. Accordingly, CLT modular construction can be a feasible way to speed up the construction and provide affordable housing. However, an in-depth study is needed to streamline the logistics of CLT modular construction supply chain management. CLT modular construction can be performed by two primary means based on type of modules produced: panelized (2D) and volumetric (3D). This research aims to help the Architecture, Engineering, and Construction (AEC) industry by developing a tool to assess the impact of various logistical factors on both panelized and volumetric modular construction productivity. Discrete-Event Simulation (DES) models were developed for panelized and volumetric CLT modular construction based on a hypothetical case study and using data collected from superintendents and project managers. Sensitivity analysis is conducted using the developed models to explore the impact of selected manufacturing and logistical parameters on overall construction efficiency. Comparing volumetric and panelized simulations with the same number of off-site crews revealed that the volumetric model has lower on-site process duration while the off-site process is significantly longer. Accordingly, from manufacturing to the final module assembly, the total time for the volumetric model is longer than panelized model. Moreover, the simulations showed that volumetric modular construction is associated with less personnel cost since the main process is performed off-site, which has lower labor costs and a smaller number of crews required on-site. This framework could be used to identify the optimum construction process for reducing the time and cost of the project and aid in decision-making regarding the scale of modularity to be employed for project.
Online Access
Free
Resource Link
Less detail

Comparison of Carbon Footprints: Mass Timber Buildings vs Steels – A Literature Review

https://research.thinkwood.com/en/permalink/catalogue2380
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Cooney, Emily
Publisher
Lakehead University
Year of Publication
2020
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Sustainability
Carbon Footprint
Mass Timber
Steel
Greenhouse Gases
Climate Change
Engineered Wood Product (EWP)
Language
English
Research Status
Complete
Summary
Sustainability and innovation are key components in the fight against climate change. Mass timber buildings have been gaining popularity due to the renewable nature of timber. Although research comparing mass timber buildings to more mainstream buildings such as steel is still in the early stages and therefore, limited. We are looking to determine the difference between carbon footprints of mass timber and traditional steel and concrete buildings. This is done with the intention of determining the sustainability and practicality of mass timber buildings.
Online Access
Free
Resource Link
Less detail

Zero-Waste Mass-Timber Residential High-Rise: A Sustainable High-density Housing Solution

https://research.thinkwood.com/en/permalink/catalogue2381
Year of Publication
2020
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
van Houten, Robert
Publisher
Delft University of Technology
Year of Publication
2020
Country of Publication
Netherlands
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Design and Systems
Keywords
Mass Timber
Residential
High-Rise
End of Life
Language
English
Research Status
Complete
Summary
More and more people live in cities. The building industry is responsible for 33% of waste production and is set to increase further to 50% in 2025. The energy efficiency is continuously increased, but the waste production at the end of life of a building is largely ignored. This design proposes a solution in the form of a zero-waste high-rise design. It uses only recyclable or renewable materials. Mass-timber is chosen as the main material as it is not only renewable and easily reusable, it is also a storage of CO2. The design reuses the foundation of existing buildings, and with the lightweight properties of mass-timber, increases the density on the location by building taller. The design is four times taller as the current buildings. To allow for sustainable densification, the design offers public and collective qualities. The building has been designed is such a way to be easily refitted during its life cycle or to be completely disassembled at the end of life.
Online Access
Free
Resource Link
Less detail

Investigation and Optimization of Connections in Timber Assemblies Subjected to Blast Loading

https://research.thinkwood.com/en/permalink/catalogue2509
Year of Publication
2020
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

A Methodological Approach for Structural Health Monitoring of Mass-Timber Buildings Under Construction

https://research.thinkwood.com/en/permalink/catalogue2519
Year of Publication
2020
Topic
Serviceability
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems

Modelling Alternative Load Paths in Platform-Framed CLT Buildings: A Finite Element Approach

https://research.thinkwood.com/en/permalink/catalogue2113
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Huber, Johannes
Publisher
Luleå University of Technology
Year of Publication
2019
Country of Publication
Sweden
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Robustness
Finite Element Method
Disproportionate Collapse
Alternative Load Paths
Language
English
Research Status
Complete
ISBN
978-91-7790-340-6
ISSN
978-91-7790-341-3
Online Access
Free
Resource Link
Less detail

Fabricated Timber: Vertical Integration of Solid Wood + The Architecture of Manufacturing

https://research.thinkwood.com/en/permalink/catalogue2171
Year of Publication
2019
Topic
Design and Systems
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Miller, Matthew
Publisher
University of Cincinnati, Graduate School
Year of Publication
2019
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Architecture
Manufacturing
Vertical Integration
Mass Timber
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Fire Performance of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2227
Year of Publication
2019
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Exploratory Study of Salvaged Lumber as Feedstock for Cross-Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue2278
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

69 records – page 1 of 7.