Skip header and navigation

62 records – page 1 of 4.

Development of a Ready-To-Assemble (RTA) Tornado Safe Room Constructed from Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue716
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Author
Black, Todd
Falk, Bob
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Topic
Design and Systems
Wind
Keywords
Ready-To-Assemble
Tornadoes
Lateral Loads
Research Status
In Progress
Summary
Over the past several decades, the market for ready-to-assemble (RTA) products has grown significantly. RTA kitchen cabinets and furniture are commonplace because they can be shipped flat and assembled on site, which has greatly reduced shipping costs as...
Resource Link
Less detail

Control of Solar-Driven Moisture Diffusion in Cross-Laminated Timber Walls with Absorptive Claddings

https://research.thinkwood.com/en/permalink/catalogue717
Topic
Design and Systems
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Glass, Samuel
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Moisture
Keywords
Moisture Content
Absorptive Claddings
US
Climates
Research Status
In Progress
Summary
Prior research showed that inward moisture diffusion from absorptive claddings such as brick veneer, stucco, or manufactured stone veneer can be significant in wood-frame walls. The inward migration of moisture is greatest when the cladding is heated by ...
Resource Link
Less detail

Evaluating Decay Resistance of Mass Timber

https://research.thinkwood.com/en/permalink/catalogue718
Topic
Serviceability
Material
CLT (Cross-Laminated Timber)
Organization
Forest Products Laboratory Mississippi State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Topic
Serviceability
Keywords
Funghi
Decay
Research Status
In Progress
Notes
Project contacts are Grant Kirker (Forest Products Laboratory), Katie Ohno (Forest Products Laboratory) and C. Elizabeth Stokes (Mississippi State University)
Summary
Outcomes anticipated from the results of this project are increased knowledge of fungal degradation applied to mass timber composite products such as CLT and the development of more targeted standardized test methodologies for testing CLT.
Resource Link
Less detail

Expanding the Cross-Laminated Timber Market through Building Moisture Monitoring and Improved Modeling

https://research.thinkwood.com/en/permalink/catalogue719
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Colorado School of Mines
Forest Products Laboratory
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Moisture
Keywords
Moisture Content
Building Envelope
Climate
Hygrothermal Models
Long-term
Research Status
In Progress
Notes
Project contacts are Shiling Pei (Colorado School of Mines) and Samuel L. Zelinka (Forest Products Laboratory)
Summary
This project will generate three benchmark data sets for multistory CLT building moisture performance in different climate zones. Data will include moisture contents at key wood components and high moisture risk locations throughout the buildings. A relatively simple, but fully validated, numerical model for analyzing similar building moisture performance will be recommended. These results will be useful for structural engineers and architects to accurately consider moisture in their design of mass timber buildings.
Resource Link
Less detail

Life Cycle Assessment and Environmental Building Declaration for "Design Building"

https://research.thinkwood.com/en/permalink/catalogue720
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
O'Connor, Jennifer
Gu, Hongmei
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Research Status
In Progress
Summary
EBD was first developed by the Athena Sustainable Materials Institute. An EBD is a summary report of the comprehensive environmental footprint data for a building and declares life-cycle impacts according to a standardized format. It is a statement of pe...
Resource Link
Less detail

Performance Criteria for Natural-Looking Coatings on Mass Timber Products Using Exterior Applications

https://research.thinkwood.com/en/permalink/catalogue722
Topic
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Nejad, Mojgan
Stokes, C. Elizabeth
Ohno, Katie
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Keywords
Coatings
Long-term
Outdoor Exposure
Research Status
In Progress
Summary
Innovative architects and engineers concerned about global warming and carbon footprints are more than ever trying to increase the application of wood and wood products in their designs. With growth in construction of green buildings, we will soon witnes...
Resource Link
Less detail

Potential for Tall Wood Buildings to Sequester Carbon, Support Forest Communities, and Create New Options for Forest Management

https://research.thinkwood.com/en/permalink/catalogue724
Topic
Environmental Impact
Market and Adoption
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bergman, Richard
Kelley, Stephen
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Market and Adoption
Cost
Keywords
Life Cycle Analysis
Carbon Sequestration
Financial Analysis
Life Cycle Costs
Economic Impact
Research Status
In Progress
Summary
The primary outcome of this work is to provide integrated analysis of the environmental, financial, and social benefits and costs of using CLT in tall wood buildings. Secondary outcomes will be (1) information, including a design team checkoff that can be used to inform the building community as they make decisions on specific, new building projects, and (2) an informational foundation for these stakeholders and others to begin to evaluate the complex tradeoffs between, and optimization of, environmental, financial, and social benefits and costs.
Resource Link
Less detail

Development of Seismic Performance Factors for Cross Laminated Timber: Phase 2

https://research.thinkwood.com/en/permalink/catalogue803
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
van de Lindt, John
Rammer, Douglas
Pei, Shiling
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Seismic Performance Factors
US
Research Status
In Progress
Summary
A collaborative project between the Forest Products Laboratory and Colorado State University to develop seismic performance factors for cross laminated timber is underway. The project requires application of the FEMA P-695 methodology, which is purposely...
Resource Link
Less detail

Evaluating Hygrothermal Performance of Interlocking Cross-Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue804
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Glass, Samuel
Smith, Ryan
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Moisture
Keywords
Climate
Building Envelope
Hygrothermal Performance
US
Interlocking CLT
Moisture
Research Status
In Progress
Summary
Unlike other solid wood panel systems, ICLT panels are manufactured without the use of adhesives or fasteners. Wood members are connected with tongue-andgroove joints within a given layer and with dovetail joints across layers. This reduces cost and allo...
Resource Link
Less detail

Blast-Resistant Testing for Loaded Mass Timber Structures

https://research.thinkwood.com/en/permalink/catalogue843
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Exterior Walls
Blast Loads
Protection
Research Status
In Progress
Summary
The objectives of this project are to develop a design methodology and to demonstrate performance for exterior bearing CLT walls used in buildings subject to force protection requirements. This methodology should be published by U.S. Army Corp of Enginee...
Resource Link
Less detail

Behavior of CLT Diaphragm Panel-to-Panel Connections with Self-tapping Screws

https://research.thinkwood.com/en/permalink/catalogue2188
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Topic
Connections
Seismic
Keywords
Screws
Tall Wood
Earthquake
Research Status
In Progress
Notes
Project contact is Thomas Miller at Oregon State University
Summary
Understanding how roof and floor systems (commonly called diaphragms by engineers) that are built from Pacific Northwest-sourced cross-laminated timber (CLT) panels perform in earthquake prone areas is a critical area of research. These building components are key to transferring normal and extreme event forces into walls and down to the foundation. The tests performed in this project will provide data on commonly used approaches to connecting CLT panels within a floor or roof space and the performance of associated screw fasteners. Structural engineers will directly benefit through improved modeling tools. A broader benefit may be increased confidence in the construction of taller wood buildings in communities at greater risk for earthquakes.
Less detail

Seismic Performance of Cross-Laminated Timber and Cross-Laminated Timber-Concrete Composite Floor Diaphragms

https://research.thinkwood.com/en/permalink/catalogue2193
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Seismic
Keywords
Stiffness
Diaphragms
Concrete Topping
Tall Wood
Strength
Research Status
In Progress
Notes
Project contact is André Barbosa at Oregon State University
Summary
This project develops benchmark data needed to generate design guidelines for structural engineers to calculate strength & stiffness of CLT-diaphragms, with and without concrete toppings. The project includes a full-scale test of a two-story mass timber building at the UC San Diego shake table in collaboration with the larger project, “Development and Validation of a Resilience-based Seismic Design Methodology for Tall Wood Buildings” which features collaborators from throughout the western US and is funded by the Natural Hazards Engineering Research Infrastructure (NHERI) program of the National Science Foundation.
Less detail

Composite Concrete-CLT Floor Systems for Tall Building Design

https://research.thinkwood.com/en/permalink/catalogue2196
Topic
Acoustics and Vibration
Connections
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Connections
Fire
Mechanical Properties
Keywords
Strength
Fire Resistance
Stiffness
Acoustics
Vibration
Research Status
In Progress
Notes
Project contact is Christopher Higgins at Oregon State University
Summary
This project will optimize the strength, stiffness, vibration characteristics, acoustic qualities and fire resistance of cross-laminated floor systems utilizing a composite concrete and cross-laminated timber product. This project includes development, testing and optimization of an economical shear connector (to connect the CLT panel to the concrete slab) that will be compared with existing screw and steel plate solutions. The resulting prototype floor system will be tested at full scale.
Less detail

Cross-Laminated Timber Fasteners Solutions for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2197
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Shear Walls
Walls
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Floors
Shear Walls
Walls
Topic
Seismic
Connections
Keywords
Wall-to-Floor
Wall-to-Wall
Wall-to-Foundation
Strength Properties
Screw Connectors
Research Status
In Progress
Notes
Project contact is Arijit Sinha at Oregon State University
Summary
Constructing buildings with CLT requires development of novel panel attachment methods and mechanisms. Architects and engineers need to know the engineering strength properties of connected panels, especially in an earthquake prone area. This project will improve knowledge of three types of wall panel connections: wall-to-floor, wall-to-wall, and wall-to-foundation. Testing will determine the strength properties of metal connectors applied with diffferent types and sizes of screw fasteners. The data will be used to develop a modeling tool that engineers can use when designing multi-story buildings to be constructed with CLT panels.
Less detail

Concrete Composite Floors Using Radiant Panel Tests

https://research.thinkwood.com/en/permalink/catalogue2259
Topic
Fire
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Floors
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Fire
Keywords
Mass Timber
Acoustics
Vibration
Research Status
In Progress
Notes
Contact: Erica Fischer, Oregon State University
Summary
In many mass timber buildings, CLT or nail laminated timber (NLT) floors are designed with a concrete topping to improve acoustic separation, reduce vibration or act as a fire barrier. Little research has examined the fire behavior of these floor systems, but some preliminary tests involving LVL show that they may be able to meet three-hour fire resistance ratings, which could potentially open up the use of mass timber in Type I buildings, representing a large market opportunity. This project will test the behavior of composite floors under fire loading conditions considering the following parameters: shear connector type, mass timber panel types and thicknesses and concrete thicknesses. It will also test and validate an innovative fire research methodology using radiant panels.
Less detail

Fire Performance of Custom CLT Layups Utilizing Pine from Logs Harvested in Western Forest Restoration Programs

https://research.thinkwood.com/en/permalink/catalogue2260
Topic
Fire

Fire Resistance of Unprotected CLT Floors & Walls Manufactured in the U.S.

https://research.thinkwood.com/en/permalink/catalogue2262
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Fire
Keywords
Douglas-Fir
SPF
Connections
Adhesives
Structural Integrity
Research Status
In Progress
Notes
Contact: Lech Muszynski, Oregon State University
Summary
This project will document the flammability of Douglas-fir and spruce-pine-fir CLT panel assemblies produced in the United States. Tests are being conducted on wall and floor panel assemblies with standard overlapping connections and produced with two different types of commonly-used adhesives. Sensors placed throughout panels will provide data about how fire affects the interior and exterior of a panel. A thermal imaging camera will provide information on how the structural integrity of panels is affected by fire and fire suppression activities.
Less detail

Mitigating Fire Performance Concern through Fire Endurance Modeling

https://research.thinkwood.com/en/permalink/catalogue2263
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Topic
Fire
Keywords
Strength Properties
Stiffness
Failure
Research Status
In Progress
Notes
Contact: Arijit Sinha, Oregon State University
Summary
The project will take the connection systems from the Composite CLT-Concrete Floor Systems for Tall Building Design project and test them over elevated temperatures to evaluate strength properties as well as how the stiffness and strength degrade at different levels of elevated temperatures. This information will be implemented into fire models and will help to predict things like failure time.
Less detail

Cross-Laminated Timber (CLT) Resistance to Infestation by Subterranean Termites

https://research.thinkwood.com/en/permalink/catalogue2265
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Organization
Mississippi State University, USDA Forest Service Forest Products Laboratory
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Biodegradation
Research Status
In Progress
Notes
Contact: C. Elizabeth Stokes, Mississippi State University, Juliet Tang, Forest Products Laboratory
Summary
Outcomes anticipated from the results of this project are biodegradation information for CLT products and an improved understanding of biodegradation differences between CLT products and comparable laminated and solid wood products. Results will benefit the emerging CLT industry and provide valuable information for market expansion into areas with high termite pressure.
Less detail

Development of Isocyanate-Free and Formaldehyde-Free Adhesives for CLT

https://research.thinkwood.com/en/permalink/catalogue2266
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Bonding
Plywood
Research Status
In Progress
Notes
Contact: Kaichang Li, Oregon State University
Summary
This project aims to develop a commercially-viable wood adhesive for CLT that is free of formaldehyde and isocyanates and possesses good cure speed properties. Li and his team have successfully developed adhesives for plywood manufacturing using abundant, inexpensive and renewable soy flour. This adhesive mimics the superior bonding properties of mussel additive proteins. Emission of hazardous air pollutants from plywood plants that use this adhesive has dropped 50-90 percent. Development of such an adhesive for CLT would address increasingly stringent air quality regulations in many places such as Oregon and California. The existing chemical formulation for the plywood adhesive will be adapted for use in a cold-pressing process. Specimens will be created at the OSU wood composites labs and first tested to verify conformance with the PRG320 product standard for CLT. Specimens passing the tests will be sent to the Energy Studies in Buildings Laboratory at the University of Oregon, Portland, where they will be conditioned and tested to determine emission characteristics.
Less detail

62 records – page 1 of 4.