A major problem in light-weight timber floors is their insufficient performance coping with impact noise in low frequencies. There are no prefabricated solutions available in Australia and New Zealand. To rectify this and enable the implementation of light-weight timber floors, a structural floor was designed and built in laminated veneer lumber (LVL). The floor was evaluated in a laboratory setting based on its behaviour and then modified with suspended ceilings and different floor toppings. Twenty-nine different floor compositions were tested. The bare floor could not reach the minimum requirement set by the Building Code of Australia (BCA) but with additional layers, a sufficient result of R'w+Ctr 53 dB and L’nT,w + CI 50 dB was reached. Doubling of the concrete mass added a marginal improvement. With concrete toppings and suspended ceiling it is possible to reach the goal in airborne and impact sound insulation. The best result was achieved by combining of additional mass and different construction layers.
When Adidas announced plans for a two-building expansion of their North American headquarters, speed and budget were key criteria. They wanted a campus that reflected their culture and commitment to quality, authenticity and innovation, but had a strict 24-month deadline. In response, the design and construction team chose a hybrid of precast concrete and mass timber for one building, and a mass timber post-and-beam solution for the other, using prefabrication to reduce the construction schedule by more than three months.
Advanced industrialized construction methods enable complex building components and systems to be built with high precision and quality. This manufacturing technique has an advantage to provide cost-competitive and high energy efficient building components and systems for both retrofits and new construction. This document gives an overview of the use of prefabricated panels in building Net Zero Energy Ready wood-frame multi-unit residential buildings (MURBs) in Edmonton.
Project contact is Kadir Sener at Auburn University (United States)
Summary
While the emphasis in the timber industry understandably focuses predominately
on complete mass timber structures, opportunities to substantially expand the mass timber
market exist using composite timber-steel systems. Timber-steel composite systems have a
high potential to be an economically, architecturally, and structurally feasible system to
expand the usage of timber panels for mid-rise and high-rise structures where mass timber is
currently not a feasible option. In this novel system, prefabricated timber panels replace
reinforced concrete slabs to provide the floor and diaphragm elements that work compositely
with steel beams and to improve the structural performance compared to either individual
material. Considerable testing effort outside the US has explored the feasibility and benefits
of these composite systems. This has led to implementation of this novel system on a number
of international construction projects. However, the topic has not been assimilated by
researchers and practitioners in the US. Hence, this proposal focuses on identifying and
removing barriers and providing design guidance on using steel-timber composite systems in
US construction. The proposal: (i) Engages a diverse body of stakeholders in an advisory panel
and workshop, (ii) Completes engineering-based testing and analysis to demonstrate
feasibility, (iii) Performs constructability studies (i.e., construction cost, speed, env. impact),
and (iv) Establishes preliminary design guidelines and approaches. The goal of the project will
be to demonstrate the performance and economy of a timber-steel composite system(s) and
establish preliminary design guidelines and approaches for target stakeholders. Ultimately,
the project will develop experimentally validated design-detailing configurations and
establish design specifications for new mass timber markets in multiple construction sectors.
Timber usage in the Australian construction industry has significantly increased due to its strength, aesthetic properties and extended allowances recently introduced in building codes. However, issues with acoustic performance of lightweight timber buildings were reported due to their inherit product variability and varying construction methods. This article reviews the recent literature on the transmissions of impact and airborne sounds, flanking transmission of timber buildings, and the state of computer prediction tools with reference to the Australian practice. An in-depth analysis of issues and an objective discussion related to acoustic performance of timber buildings are presented. Timber is a lightweight material and shows low airborne sound resistance in low frequency range. Attenuation of sound transmission with addition of mass, layer isolation, different products like cross-laminated timber and prefabrication are discussed. Challenges in measuring sound transmissions and reproducibility of results in low frequency ranges are discussed. Well-defined measurement protocols and refined computer simulation methods are required. The serviceability design criteria for modern lightweight timber applications in Australia need to be re-evaluated in the area of impact generated sound. Developing computer tools to predict airborne and impact sound transmission in lightweight timber buildings is quite challenging as several components such as timber members and complex connections with varying stiffnesses are non-homogeneous by nature. Further, there is a lack of experimentally validated and computationally efficient tools to predict the sound transmission in timber buildings. Computer prediction tools need to be developed with a focus on mid-frequency transmission over flanks and low-frequency transmission of timber and prefabricated buildings.
Walls, as components of the lateral-force-resisting system of a building, are defined as shear walls. This study aims to determine the behavior of shear wall panel cross-laminated-timber-based mangium wood (Acacia mangium Willd) (CLT-mangium) in earthquake-resistant prefabricated houses. The earthquake performance of CLT mangium frame shear walls panels has been studied using monotonic tests. The shear walls were constructed using CLT-mangium measuring 2400 mm × 1200 mm × 68 mm with various design patterns (straight sheathing, diagonal sheathing/45°, windowed shear wall with diagonal pattern and a door shear wall with a diagonal pattern). Shear wall testing was carried out using a racking test, and seismic force calculations were obtained using static equivalent earthquake analysis. CLT-mangium sheathing installed horizontally (straight sheathing) is relatively weak compared to the diagonal sheathing, but it is easier and more flexible to manufacture. The diagonal sheathing type is stronger and stiffer because it has triangulation properties, such as truss properties, but is more complicated to manufacture (less flexible). The type A design is suitable for low-intensity zones (2), and types B, D, E1 and E2 are suitable for moderate-intensity zones (3, 4), and type C is suitable for severe-intensity zones (5).
A balanced combination of heat flows creates suitable conditions for thermal comfort—a factor contributing to the quality of the internal environment of buildings. The presented analysis of selected thermal-technical parameters is up-to-date and suitable for verifying the parameters of building constructions. The research also applied a methodology for examining the acoustic parameters of structural parts of buildings in laboratory conditions. In this research, selected variant solutions of perimeter walls based on prefab cross laminated timber were investigated in terms of acoustic and thermal-technical properties. The variants structures were investigated in laboratory but also in model conditions. The results of the analyses show significant differences between the theoretical or declared parameters and the values measured in laboratory conditions. The deviations of experimental measurements from the calculated or declared parameters were not as significant for variant B as they were for variant A. These findings show that for these analyzed sandwich structures based on wood, it is not always possible to reliably declare calculated values of thermal-technical and acoustic parameters. It is necessary to thoroughly examine such design variants, which would contribute to the knowledge in this field of research of construction systems based on wood.
An Empirical Analysis of Barriers to Building Information Modelling (BIM) Implementation in Wood Construction Projects: Evidence from the Swedish Context
Building information modelling is gradually being recognised by the architecture, engineering, construction, and operation industry as a valuable opportunity to increase the efficiency of the built environment. Focusing on the wood construction industry, BIM is becoming a necessity; this is due to its high level of prefabrication and complex digital procedures using wood sawing machines and sophisticated cuttings. However, the full implementation of BIM is still far from reality. The main objective of this paper is to explore the barriers affecting BIM implementation in the Swedish construction industry. An extensive literature review was conducted to extract barriers hindering the implementation of BIM in the construction industry. Secondly, barriers to the implementation of BIM in the wood construction industry in Sweden were extracted using the grounded theory methodology to analyse expert input on the phenomenon of low BIM implementation in the wood construction industry in Sweden. Thirty-four barriers were identified. The analysis of this study also led to the development of a conceptual model that recommended solutions to overcome the barriers identified to help maximise BIM implementation within the wood construction industry. Identifying the main barriers affecting BIM implementation is essential to guide organisational decisions and drive policy, particularly for governments that are considering articulating regulations to expand BIM implementation.
In this paper, the bending properties of a 3-ply cross-laminated bamboo and timber (CLBT), prefabricated with the bamboo mat-curtain panel and hem-fir lumber, were examined in the major and minor strength directions, and a 3-ply hem-fir cross-laminated timber (CLT) was taken as a control group. The analytical model for the sum of the orthogonal apparent bending moduli with the two types of layer classifications were proposed, and the two kinds of contribution models were developed to analyze the apparent bending modulus variation behavior of the CLBT and CLT panels in the major and minor strength directions. The experimental results showed that since the CLBT group had more internal orthogonal structures, its difference in the bending properties between the major and minor strength directions was lower than that of the CLT group. Furthermore, the proposed contribution models quantitatively analyzed the relationship between the apparent bending moduli of the CLBT and CLT panels and the corresponding composition layer characteristics. The contribution model to characterize the apparent bending modulus in major and minor strength directions demonstrated good agreement with the test results. Based on this model interpreted by three-dimensional figures, the contribution variation characteristics in the major and minor strength directions were revealed.
The paper describes experimental and numerical analyses on a completely new connection system developed for CLT (Cross Laminated Timber) constructions. The innovative solution herein proposed, named X-RAD, consists of a point-to-point mechanical connection system, fixed to the corners of the CLT panels. This connection, that is designed to be prefabricated, is made of a metal wrapping and an inner hard wood element which are fastened to the panel by means of allthreaded self-tapping screws. Such system permits to reduce significantly the number of bolts/fasteners required to assemble two or more panels together or to connect them to the foundation. This results in the enhancement of the installation process in terms of speed, quality and safety. One of the reasons that fuelled the development of the presented system, is the desire of offering a solution to those issues (e.g. to satisfy ductility and energetic dissipation requirements) commonly related to the seismic safety of timber structures. In other words there was the will of defining a system able to guarantee an adequate level of ductility and energetic dissipation.
An innovative timber-steel hybrid beam consisting of glulam mechanically reinforced by means of steel rod: Analytical and preliminary numerical investigations
There is an increasing interest in large-dimensional timber structural elements within the construction sector in order to fulfil the combined demand of sustainability, open spaces and architectural flexibility. Current timber technology allows for efficient production of long-size beams, but many problems are related to their overall high costs due to difficulties in transportation, manufacturing on site and handling during the mounting phase. Hence, the aim of this work is to propose and study an innovative timber-steel hybrid structural element composed of shorter pieces of beams connected and reinforced by means of a system consisting of steel shear keys and steel rods. The small timber elements and steel devices can be prefabricated with low costs and easily assembled into large elements at the construction sites. The proposed system can also be used for retrofitting of existing timber members when it is necessary to increase their strength, stiffness and ductility. The structural behavior of the proposed system was therefore studied both as a connection and as a retrofitting technique, which were analyzed via two types of hybrid beams, one with a splice at mid-span and one without, separately. A simple glulam beam with the same geometrical characteristics of the two hybrid structures was also investigated for the comparison of the structural behavior. The analytical results show that the hybrid beams with and without splice have both obtained significant increasement in the stiffness, strength and ductility. The numerical analyses are limited in the elastic stage due to the elastic mechanical properties assigned to the structural components. The numerical results show good agreement with the analytical ones for each type of beam in terms of the stiffness in the elastic stage. Finally, the influence of the parameters such as the distance between shear keys, slip modulus of shear keys and diameter of rod, on the structural behavior of hybrid beams is discussed in this paper.
One of the most recent innovations in Engineered Wood Products is Cross-Laminated Timber (CLT). The system is based on the use of multi-layered panels made from solid wood boards glued together, with the grain direction of successive layers placed at 90° angles. The cross-laminated configuration improves rigidity, dimensional stability, and mechanical properties. Structurally, CLT offers performance comparable to concrete or steel, with panels suitable for use as walls, floors, roofs, and other applications. While CLT as a construction material has been successful in Europe for the past 20 years, and more recently has made inroads in the Australian and Canadian markets, it is not yet readily available in the United States.
To better understand the market potential for CLT in the U.S., this study aims to assess the level of awareness, perceptions and willingness to adopt the system by U.S. professionals. To achieve these objectives, (a) a series of 10 interviews were conducted to gather insights from national and international CLT experts; (b) a web-based survey to U.S. architecture firms was conducted to gather information about familiarity, perceptions, performance and likelihood to adopt the system in the near future; and (c) a multi-family residential building project was designed to explore the architectural possibilities of the material.This study identified that the use of wood, a natural and renewable material, was the main advantage of CLT. Another important benefit of CLT over traditional construction systems is the dramatically shorter on-site construction time needed. CLT is a prefabricated system, thus reducing labor requirements, on-site waste, and accidents, all of which translates into significant cost reductions. The most commonly cited disadvantages of CLT were its acoustic and vibration performance. From the study it was found that the level of awareness about CLT is low among U.S. architects. Building Code compatibility, availability in the domestic market and cost were mentioned as the main barriers to the implementation of the system in the U.S. Cross-Laminated Timber appears to be a cost-competitive alternative to concrete structures, especially for buildings over six stories high. Architects seem to be willing to adopt CLT for their near-future projects, especially for multi-family, commercial, and recreational buildings. Importantly, this willingness to adopt CLT was found to be positively correlated to the level of awareness with the system.
Results show that diffusion of knowledge about CLT and the role of early adopters will be essential for the successful introduction of this new building technology into the U.S. market. The preliminary design created as part of this study allowed demonstrating the structural capabilities of CLT, by maximizing the spans between structural elements achieving open and fluid living spaces. CLT also enabled the design of wide terraces and the inclusion of window openings on outside walls without compromising the structural integrity of the CLT elements.
ICSI 2021 The 4th International Conference on Structural Integrity
Research Status
Complete
Series
Procedia Structural Integrity
Summary
Rigid timber to concrete connection is the most effective solution for timber-concrete composite members subjected to the flexure which provides full composite action and better structural behaviour. One of the most used technologies to produce glued connection of the timber-concrete composite is “dry” method, which includes gluing together of timber and precast concrete slab. This technique has high risk of forming a poor-quality rigid connection in timber-concrete composite, and there are difficulties in controlling the quality of the glued connection. The effect of the non-glued areas in connection between composite layers on the shear stresses and energy absorption were investigated by finite element method and laboratorian experiment. Three timber-concrete composite panels in combination with carbon fibre reinforced plastic composite tapes in the tension zone with the span 1.8 m were statically loaded till the failure by the scheme of three-point bending. Mid-span displacements were measured in the bending test. One specimen was produced by dry method, by gluing together cross-laminated timber panel and prefabricated concrete panel. Timber-concrete qualitative connection of the other two specimens was provided by the granite chips, which were glued on the surface of the cross-laminated timber by epoxy, and then wet concrete was placed. Dimensions of the crushed granite pieces changes within the limits from 16 to 25 mm. The investigated panel with different amount and sizes of non-glued areas in the timber to concrete connection was numerically modelled. Obtained results shown, that the increase of shear stresses is influenced not so much by a total amount of non-glued areas, but by the size of the individual defective areas. Moreover, large non-glued areas significantly reduce the energy absorption of elements subjected to the flexure, which was observed experimentally for defective panel produced by the classical dry method with almost 4 times larger mid-span displacements than for panel with full composite action provided by the proposed production technology of the timber to concrete rigid connection. So, the proposed technology based on the use of granite chips, provides a high-quality connection between timber and concrete layers, with insignificant ration between possible defect and total connection surface area, which is equal to the area of one granite chips edge.
This paper examines a new and very promising concept for prefabricated timber-concrete-composite floors (TCC-floors), were the heavy normal weight concrete is replaced by a lightweight concrete (LC) with a density of about 17 kN/m³. Investigations into the connections between lightweight concrete and timber indicate that the performances of the existing connection types are unsatisfactory if combined with lightweight concrete. Therefore, a new connection method is proposed, adhesively bonding the lightweight concrete with the timber by means of a filled epoxy resin. Different ways of manufacturing the bonded timber-lightweight concrete-composite beams (TLCC-beams) are investigated in a research project at the Technische Universität Berlin, to examine the differences in their structural performances. Most promising are the test results for TLLC-beams, fabricated with a wet-in-wet bonding method.
Calculative Cost and Process Analysis of Timber-Concrete-Composite Ceilings with Focus on Effort and Performance Values for Cost Calculations of Multi-Storey Timber Buildings
Composite structures use the advantages of two materials – timber and concrete – and improve the efficiency of a material application. Especially the concept of timber-concrete-composite ceilings has synergetic effects to achieve an effective ratio of thickness to span with high cost effectiveness simultaneously. Following the systematic...
The need to lower the embodied carbon impact of the built environment and sequester carbon over the life of buildings has spurred the growth of mass timber building construction, leading to the introduction of new building types (Types IV-A, B, and C) in the 2021 International Building Code (IBC). The achievement of sustainability goals has been hindered by the perceived first cost assessment of mass timber systems. Optimizing cost is an urgent prerequisite to embodied carbon reduction. Due to a high level of prefabrication and reduction in field labor, the mass timber material volume constitutes a larger portion of total project cost when compared to buildings with traditional materials. In this study, the dollar cost, carbon emitted, and carbon sequestered of mass timber beam–column gravity system solutions with different design configurations was studied. Design parameters studied in this sensitivity analysis included viable building types, column grid dimension, and building height. A scenario study was conducted to estimate the economic viability of tall wood buildings with respect to land costs. It is concluded that, while Type III building designations are the most economical for lower building heights, the newly introduced Type IV subcategories remain competitive for taller structures while providing a potentially significant embodied carbon benefit.
This article outlines the structural design approach used for the Brock Commons Student Residence project, an 18-storey wood building at the University of British Columbia in Vancouver, Canada. When completed in summer 2017, it will be the tallest mass timber hybrid building in the world at 53 meters high. Fast + Epp are the structural engineers, working in conjunction with Acton Ostry Architects and Hermann Kaufmann Architekten. Total project costs, inclusive of fees, permits etc. are $51.5M CAD.
This study explores the use of Cross Laminated Timber (CLT) in a 10-story residential building as an alternative building method to concrete and steel construction. The study is not meant to be exhaustive, rather a preliminary investigation to test the economic viability of utilizing this new material to increase density, walkability and sustainable responsiveness in our built environment.
Based on international precedent, CLT is an applicable material for low-rise, as well as mid-rise to high-rise construction and has a lighter environmental footprint than traditional concrete and steel construction systems. Cross-laminated timber is a large format solid wood panel building system originating from central Europe. As a construction system it is similar to precast concrete in which large prefabricated panels are lifted by crane and installed using either a balloon frame or platform frame system. The advantages to using CLT are many, but the main benefits include: shorter construction times, fewer skilled laborers, better tolerances and quality, safer work environment, utilization of regional, sustainable materials, and reduction of carbon footprint of buildings. As a new, unproven material in the Pacific Northwest, this study investigates the cost competitiveness of CLT versus traditional materials for “low high-rise” buildings.
The widely available automated prefabrication in timber construction companies, as well as modern CAD software with application programing interfaces, allow for the design and production of increasingly geometrically complex building components. This development also enables and demands at the same time advanced joinery techniques. Analog to the developments in timber framing, this article presents the adaptation of a traditional wood-wood joinery technique from cabinetmaking, on the casestudy of a shell structure built from curved cross-laminated timber (CLT) panels. The dovetail-joints allow for a load-bearing glued joint between the CLT panels. They provide an aesthetic, visible connection and simplify the assembly through their integrated locator features.
Recent interests in adopting sustainable materials and developments in construction technology have created a trend of aiming for greater heights with timber buildings. With the increased height these buildings are subjected to higher level of lateral load demand. A common and efficient way to increase capacity is to use shearwalls, which can resist significant part of the load on the structures. Prefabricated mass timber panels such as those made of Cross-Laminated Timber (CLT) can be used to form the shearwalls. But due to relatively low stiffness value of timber it is often difficult to keep the maximum drifts within acceptable limit prescribed by building codes. It becomes necessary to either increase wall sizes to beyond available panel dimensions or use multiple or groups of walls spread over different locations over the floor plan. Both of the options are problematic from the economic and functional point of view. One possible alternative is to adopt a Hybrid system, using Steel Plate Shear Walls (SPSW) with timber moment frames. The SPSW has much higher stiffness and combined with timber frames it can reduce overall building drifts significantly. Frames with prefabricated timber members have considerable lateral load capacity. For structures located in seismic regions the system possesses excellent energy dissipation ability with combination of ductile SPSW and yielding elements within the frames. This paper investigates combination of SPSW with timber frames for seismic applications. Numerical model of the system has been developed to examine the interaction between the frames and shear walls under extreme lateral load conditions. Arrangements of different geometries of frames and shear walls are evaluated to determine their compatibility and efficiency in sharing lateral loads. Recommendations are presented for optimum solutions as well as practical limits of applications.