Skip header and navigation

Refine Results By

142 records – page 1 of 8.

Experimental and numerical study on the bending response of a prefabricated composite CLT-steel floor module

https://research.thinkwood.com/en/permalink/catalogue3047
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Author
Owolabi, David
Loss, Cristiano
Organization
University of British Columbia
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Composite Floors
Hybrid Construction
Mass Timber
Cross-laminated Timber
Prefabricated Construction
Low-Carbon Structures
Bending Stiffness
Research Status
Complete
Series
Engineering Structures
Summary
Cross-laminated timber (CLT) is one of the most widely utilized mass timber products for floor construction given its sustainability, widespread availability, ease of fabrication and installation. Composite CLT-based assemblies are emerging alternatives to provide flooring systems with efficient design and optimal structural performance. In this paper, a novel prefabricated CLT-steel composite floor module is investigated. Its structural response to out-of-plane static loads is assessed via 6-point bending tests and 3D finite-element computational analysis. For simply supported conditions, the results of the investigation demonstrate that the floor attains a high level of composite efficiency (98%), and its bending stiffness is about 2.5 times those of its components combined. Within the design load range, the strain diagrams are linear and not affected by the discontinuous arrangement and variable spacing of the shear connectors. The composite floor module can reach large deflection without premature failure in the elements or shear connectors, with plasticity developed in the cold-formed steel beams and a maximum attained load 3.8 times its ultimate limit state design load. The gravity design of the composite module is shown to be governed by its serviceability deflection requirements. However, knowledge gaps still exist on the vibration, fire, and long-term behaviour of this composite CLT-steel floor system.
Online Access
Free
Resource Link
Less detail

Deconstructable Hybrid Connections for the Next Generation of Prefabricated Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2809
Year of Publication
2021
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Shear Walls
Author
Shulman, Samuel
Loss, Cristiano
Organization
University of British Columbia
Year of Publication
2021
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Shear Walls
Topic
Connections
Keywords
Steel Rods
Epoxy
Push-Out-Shear Tests
Prefabrication
Disassembly
Reuse
Research Status
Complete
Summary
Timber has been used for building construction for centuries, until the industrial revolution, when it was often replaced by steel and concrete or confined to low-rise housings. In the last thirty years however, thanks to the development of mass timber products and new global interest in sustainability, timber has begun to make a resurgence in the building industry. As building codes and public perception continues to change, the demand for taller and higher-performance timber buildings will only grow. Thus, a need exists for new construction technology appropriate for taller mass timber construction, as well as for fabrication and deconstruction practices that respect wood’s inherent sustainable nature. With this in mind, this research program aims to develop a new hybrid shear connection for mass timber buildings that allows for easy construction, deconstruction, and reuse of the structural elements. This report includes results of Phase 1, which focused on connections consisting of partially threaded 20M and 24M steel rods bonded into pockets formed in CLT and surrounded by thick crowns of high-strength three-component epoxy-based grout. A total of 168 specimens were designed and fabricated, and push-out shear tests carried out with a displacement-controlled monotonic loading protocol. Strength and stiffness values were assessed and effective failure modes in specimens identified. These latter, along with the recorded load-deformation curves, indicate that it is possible to develop mechanics-based design models and design formulas akin to those already used for typical dowel-type fastener timber connections. Additionally, the specimens were easily fabricated in the lab and quickly fastened to the test jig by means of nuts and washers, suggested such connections have a strong potential for prefabrication, disassembly, and reuse.
Online Access
Free
Resource Link
Less detail

Experimental Investigation on the Long-Term Behaviour of Prefabricated Timber-Concrete Composite Beams with Steel Plate Connections

https://research.thinkwood.com/en/permalink/catalogue2741
Year of Publication
2021
Topic
Connections
Serviceability
Material
Timber-Concrete Composite
Application
Beams
Author
Shi, Benkai
Liu, Weiqing
Yang, Huifeng
Publisher
ScienceDirect
Year of Publication
2021
Format
Journal Article
Material
Timber-Concrete Composite
Application
Beams
Topic
Connections
Serviceability
Keywords
TCC
Prefabrication
Steel Plate
Long-term Behaviour
Interface Slip
Loading
Shear Connections
Deflection
Temperature
Humidity
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper presents the results of long-term experiments performed on three timber-concrete composite (TCC) beams. An innovative fabricated steel plate connection system, which consists of screws and steel plates embedded in concrete slabs, was adopted in the TCC beam specimens. The adopted shear connection can provide dry-type connection for TCC beams. Steel plates were embedded in concrete slabs while the concrete slab was constructed in factories. The timber beam and concrete slab can be assembled together using screws at the construction site. In this experimental programme, the beam specimens were subjected to constant loading for 613 days in indoor uncontrolled environments. The influence of long-term loading levels and the number of shear connections on the long-term performance of TCC beams was investigated and discussed. The mid-span deflection, timber strain, and interface relative slip at the positions of both connections and beam-ends were recorded throughout the long-term tests. It was found the long-term deflection of the TCC beam increased by approximately 60% while the long-term loads were doubled. Under the influence of the variable temperature and humidity, the TCC specimens with 8 shear connections showed slighter fluctuations compared with the TCC beam with 6 shear connections. In the 613-day observation period, the maximum deflection increment recorded was 6.56 mm for the specimen with eight shear connections and 20% loading level. A rheological model consisting of two Kelvin bodies was employed to fit the curves of creep coefficients. The final deflections predicted of all specimens at the end of 50-year service life were 2.1~2.7 times the initial deflections caused by the applied loads. All beam specimens showed relative small increments in mid-span deflection, strain and relative slip over time without any degradations, demonstrating the excellent long-term performance of TCC beams using the innovative steel plate connection system, which is also easily fabricated.
Online Access
Free
Resource Link
Less detail

Analysis of the Characteristics of External Walls of Wooden Prefab Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2694
Year of Publication
2020
Topic
Energy Performance
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Švajlenka, Jozef
Kozlovská, Mária
Badida, Miroslav
Moravec, Marek
Dzuro, Tibor
Vranay, František
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Energy Performance
Acoustics and Vibration
Keywords
Acoustic Properties
Thermal Properties
Prefabrication
Research Status
Complete
Series
Energies
Summary
A balanced combination of heat flows creates suitable conditions for thermal comfort—a factor contributing to the quality of the internal environment of buildings. The presented analysis of selected thermal-technical parameters is up-to-date and suitable for verifying the parameters of building constructions. The research also applied a methodology for examining the acoustic parameters of structural parts of buildings in laboratory conditions. In this research, selected variant solutions of perimeter walls based on prefab cross laminated timber were investigated in terms of acoustic and thermal-technical properties. The variants structures were investigated in laboratory but also in model conditions. The results of the analyses show significant differences between the theoretical or declared parameters and the values measured in laboratory conditions. The deviations of experimental measurements from the calculated or declared parameters were not as significant for variant B as they were for variant A. These findings show that for these analyzed sandwich structures based on wood, it is not always possible to reliably declare calculated values of thermal-technical and acoustic parameters. It is necessary to thoroughly examine such design variants, which would contribute to the knowledge in this field of research of construction systems based on wood.
Online Access
Free
Resource Link
Less detail

Harmonization of Structural and Functional Lifespans of Prefabricated Residential Buildings

https://research.thinkwood.com/en/permalink/catalogue2744
Year of Publication
2020
Topic
Serviceability
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems
Hybrid Building Systems
Author
Kokas, Balázs
Balogh, Jeno
Borsos, Ágnes
Gabriella, Medvegy
Bachmann, Bálint
Publisher
IIETA
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems
Hybrid Building Systems
Topic
Serviceability
Design and Systems
Keywords
Prefabrication
Modular
Sustainability
Structural Lifespan
Functional Lifespan
Research Status
Complete
Series
International Journal of Design & Nature and Ecodynamics
Summary
Technological developments and social trends can create demand for new building functionalities, necessitating the adaptation of existing buildings. This paper presents the development of a modular building structural system that provides for the harmonization between the structural and functional lifespans of a building in order to achieve greater sustainability. The limitations of the existing prefabricated urban buildings with respect to their adaptability are contrasted with the proposed solution. The use of prefabricated engineered materials, such as cross laminated timber (CLT) and CLT-concrete composites, in conjunction with a modular system, reduces any climatic effects. The inherent advantages of incorporating detachable connections allows for the necessary structural adaptability, subsequently harmonizing and elongating the structural and functional lifespans. The resulting sustainable concept, when applied to residential buildings, could serve as a solution to address projections of future urban growth.
Online Access
Free
Resource Link
Less detail

Towards digital automation flexibility in large-scale timber construction: integrative robotic prefabrication and co-design of the BUGA Wood Pavilion

https://research.thinkwood.com/en/permalink/catalogue2862
Year of Publication
2020
Topic
Design and Systems
Site Construction Management
Material
LVL (Laminated Veneer Lumber)
Application
Shell Structures
Author
Wagner, Hans Jakob
Alvarez, Martin
Groenewolt, Abel
Menges, Achim
Organization
University of Stuttgart
Publisher
Springer
Year of Publication
2020
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Shell Structures
Topic
Design and Systems
Site Construction Management
Keywords
Robotic Timber Construction
Computational Design
Construction Automation
Robotic Construction Management
Research Status
Complete
Series
Construction Robotics
Summary
This paper discusses the digital automation workflows and co-design methods that made possible the comprehensive robotic prefabrication of the BUGA Wood Pavilion—a large-scale production case study of robotic timber construction. Latest research in architectural robotics often focuses on the advancement of singular aspects of integrated digital fabrication and computational design techniques. Few researchers discuss how a multitude of different robotic processes can come together into seamless, collaborative robotic fabrication workflows and how a high level of interaction within larger teams of computational design and robotic fabrication experts can be achieved. It will be increasingly important to discuss suitable methods for the management of robotics and computational design in construction for the successful implementation of robotic fabrication systems in the context of the industry. We present here how a co-design approach enabled the organization of computational design decisions in reciprocal feedback with the fabrication planning, simulation and robotic code generation. We demonstrate how this approach can implement direct and curated reciprocal feedback between all planning domains—paving the way for fast-paced integrative project development. Furthermore, we discuss how the modularization of computational routines simplify the management and computational control of complex robotic construction efforts on a per-project basis and open the door for the flexible reutilization of developed digital technologies across projects and building systems.
Online Access
Free
Resource Link
Less detail

Technical Guide for the Design and Construction of Tall Wood Buildings in Canada

https://research.thinkwood.com/en/permalink/catalogue3034
Edition
Second Edition
Year of Publication
2022
Topic
Design and Systems
Application
Wood Building Systems
Organization
FPInnovations
Editor
Karacabeyli, Erol
Lum, Conroy
Edition
Second Edition
Year of Publication
2022
Format
Book/Guide
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Engineered Wood Products
Mass Timber Construction
Tall Wood Buildings
Hybrid Tall Wood Buildings
Cost
Sustainability
Serviceability
Seismic
Fire Safety
Building Enclosure
Prefabrication
Monitoring
Maintenance
Research Status
Complete
Summary
Since the publication of the first edition of this guide, substantial regulatory changes have been implemented in the 2020 edition of the National Building Code of Canada: the addition of encapsulated mass timber construction up to 12 storeys, and the early adoption of the related provisions by several provinces are the most notable ones. The 2022 edition of this guide brings together, under one cover, the experience gained from recently built tall wood projects, highlights from the most recent building codes and standards, and research findings to help achieve the best environmental, structural, fire, and durability performance of mass timber products and systems, including their health benefits. The approaches to maximizing the benefits of prefabrication and building information modelling, which collectively result in fast, clean, and quiet project delivery, are discussed. Methods for addressing limitations controlled by fire requirements (through an Alternative Solution) or seismic requirements (through a hybrid solution using an Acceptable Solution in steel or concrete) are included. How best to build with mass timber to meet the higher performance requirements of the Energy Step Codes is also discussed. What makes building in wood a positive contribution toward tackling climate change is discussed so that design teams, in collaboration with building owners, can take the steps necessary to meet either regulatory or market requirements.
Online Access
Free
Resource Link
Less detail

Energy, Seismic, and Architectural Renovation of RC Framed Buildings with Prefabricated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2503
Year of Publication
2020
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Hybrid simulation of a post-tensioned timber frame and validation of numerical models for seismic design

https://research.thinkwood.com/en/permalink/catalogue3107
Year of Publication
2022
Topic
Seismic
Application
Frames
Author
Ogrizovic, J.
Abbiati, G.
Stojadinovic, B.
Frangi, A.
Organization
MWV Bauingenieure
University of Aarhus
ETH Zurich
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Application
Frames
Topic
Seismic
Keywords
Post-tensioned Timber Frame
Seismic Analysis
Hybrid Simulation
Finite Element Modeling
Research Status
Complete
Series
Engineering Structures
Summary
The post-tensioned frame is one of the recently emerged structural systems for multi-story timber buildings. It is characterized by a high level of prefabrication and quick erection on the construction site. The post-tensioned frame developed at ETH Zurich is based on post-tensioned beam–column connections with hardwood reinforcement of the column in the connection region and column base connections with glued-in steel rods. Such a construction system is suitable for low- and mid-rise buildings that are located in regions characterized by low to moderate seismicity. This paper presents a series of hybrid simulations of the response of a two-story two-bay post-tensioned timber frame subjected to ground motion excitation. Nonlinear numerical models of both beam–column and column base connections to be used for design purposes are validated based on the experiments.
Online Access
Free
Resource Link
Less detail

Timber-concrete composite structural flooring system

https://research.thinkwood.com/en/permalink/catalogue3065
Year of Publication
2022
Topic
Mechanical Properties
Design and Systems
Material
Timber-Concrete Composite
Application
Floors
Author
Estévez-Cimadevila, J.
Martín-Gutiérrez, E.
Suárez-Riestra, F.
Otero-Chans, D.
Vázquez-Rodríguez, J. A.
Organization
Universidade da Coruña
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Design and Systems
Keywords
Timber Flooring System
Mixed Beams
Shear Connector
Research Status
Complete
Series
Journal of Building Engineering
Summary
An integrated solution is presented for the execution of building structures using timber-concrete composite (TCC) sections that make efficient use of the mechanical properties of both materials. The system integrates flooring and shaped prefabricated beams composed of a lower flange of glued laminated timber (GLT) glued to one or more plywood or laminated veneer lumber (LVL) ribs and linked to an upper concrete slab poured in situ. The parts may be prefabricated in T shape (only one rib), in p shape (two ribs), or with multiple ribs to create wider pieces, thereby reducing installation operations. The basis of the system is the timber-concrete shear connection in the form of holes through the ribs, which are filled by the in situ-poured concrete. The connection is complemented with the arrangement of reinforcement bars through the holes. Three test campaigns were undertaken. Shear tests of the timber-concrete connection in 12 test pieces. Shear test along the wood-wood glue line (72 planes tested) and wood -plywood (24 planes tested). Delamination test of the glued planes (24 wood-wood planes and 8 wood-plywood planes). The results indicate a high strength joint, with ductile failure and high composite effect. Likewise, the shear test results along the glue line and the delamination tests show section integrity under demanding hygrothermal conditions. Preliminary sizing curves were developed considering the Gamma Method to evaluate the performance of the system. The results show the possibilities of the system, as pouring the upper slab concrete in situ makes it possible to create continuous semi-rigid joints between the elements. This gives rise to slender flooring structures, light and with high stiffness plane against horizontal forces.
Online Access
Free
Resource Link
Less detail

A numerical and experimental investigation of non-linear deformation behaviours in light-frame timber walls

https://research.thinkwood.com/en/permalink/catalogue3022
Year of Publication
2022
Topic
Mechanical Properties
Application
Walls
Shear Walls
Author
Kuai, Le
Ormarsson, Sigurdur
Vessby, Johan
Maharjan, Rajan
Organization
Linnaeus University
Karlstad University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Application
Walls
Shear Walls
Topic
Mechanical Properties
Keywords
Timber Structures
Internal Force Distribution
Light-frame Shear Walls
Parametric Study
Openings
Research Status
Complete
Series
Engineering Structures
Summary
In recent decades, there is a trend in Scandinavian countries to build multi-storey residential houses using prefabricated timber modules. It is a highly efficient construction process with less environmental impact and less material waste. A significant building element in the timber modules is the light-frame timber wall, which has to be carefully analysed and optimized in this process. This paper presents a new parametric Finite Element (FE) model that can simulate both in-plane and out-of-plane deformations in the light-frame walls. A new and flexible (Eurocode based) approach to define the properties of the mechanical connections is introduced. A numerical model is presented through simulations of several walls that were verified with full-scale experiments. The results indicate that the numerical model could achieve fairly reasonable accuracy with the new approach. Furthermore, several parametric studies are presented and discussed from global and local points of view, to investigate the effects of certain parameters that are not considered in the design method according to Eurocode 5.
Online Access
Free
Resource Link
Less detail

Structural Performance of Mass Timber Panel-Concrete Composite Floors with Notched Connections

https://research.thinkwood.com/en/permalink/catalogue3122
Year of Publication
2022
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Zhang, Lei
Organization
University of Alberta
Year of Publication
2022
Format
Thesis
Material
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Notched Connection
Discrete Bond Composite Beam Model
Mass Timber Panel
Connection Stiffness
Effective Bending Stiffness
Load-Carrying Capacity
Research Status
Complete
Summary
This thesis focuses on the structural performance of mass timber panel-concrete composite floors with notches. Mass timber panels (MTPs) such as cross-laminated timber, glue-laminated timber, and nail-laminated timber, are emerging construction materials in the building industry due to their high strength, great dimensional stability, and prefabrication. The combination of MTPs and concrete in the floor system offers many structural, economic, and ecological benefits. The structural performance of MTP-concrete composite floors is governed by the shear connection system between timber and concrete. The notched connections made by cutting grooves on timber and filling them with concrete are considered as a structurally efficient and cost-saving connecting solution for resisting shear forces and restricting relative slips between timber and concrete. However, the notched connection design in the composite floors is not standardized and the existing design guidelines are inadequate for MTP-concrete composite floors. To study the structural performance of notched connections and notch-connected composite floors, this thesis presented experimental, numerical, and analytical investigations. Push-out tests were conducted on the notched connections first, and then bending tests and vibration tests were conducted on full-scale composite floors. Finite element models were built for the notched connections to derive the connection shear stiffness. Finally, analytical solutions were developed to predict the internal actions of the composite floors under external loads. This study shows that the structural performance of notched connections is affected by the geometry of the connections and material properties of timber and concrete. The notch-connected MTP-concrete composite floors showed high bending stiffness but were not fully composite. The floors with shallow notches tended to fail in a ductile manner but had lower bending stiffness than floors with deep notches. The composite floors with deep notches, however, often fail abruptly in the concrete notches. By reinforcing the notched connections with steel fasteners, the composite floor can achieve high bending stiffness, high load-carrying capacity, and controlled failure pattern. The proper number and locations of notched connections in the composite floors can be determined from the proposed composite beam model. This thesis presented promising results in terms of the static and dynamic structural performance of notch-connected MTP-concrete composite floors. The test investigations added additional data to the current research body and prompted further evolvement of timber-concrete composite floors. The proposed empirical equations for estimating the connection stiffness and strength and composite beam model for predicting the serviceability and ultimate structural performance of composite floors provide useful tools to analyze the notch-connected MTP-concrete composite floors. The design recommendations for MTP-concrete composite floors with notches are provided in the thesis.
Online Access
Free
Resource Link
Less detail

An experimental and modeling study on apparent bending moduli of cross-laminated bamboo and timber (CLBT) in orthogonal strength directions

https://research.thinkwood.com/en/permalink/catalogue2914
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Li, Hao
Wang, Brad
Wang, Libin
Wei, Yang
Organization
Nanjing Forestry University
Southwest Forestry University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Bending Performance
Modeling Analysis
Cross-laminated Bamboo and Timber
Research Status
Complete
Series
Case Study in Construction Materials
Summary
In this paper, the bending properties of a 3-ply cross-laminated bamboo and timber (CLBT), prefabricated with the bamboo mat-curtain panel and hem-fir lumber, were examined in the major and minor strength directions, and a 3-ply hem-fir cross-laminated timber (CLT) was taken as a control group. The analytical model for the sum of the orthogonal apparent bending moduli with the two types of layer classifications were proposed, and the two kinds of contribution models were developed to analyze the apparent bending modulus variation behavior of the CLBT and CLT panels in the major and minor strength directions. The experimental results showed that since the CLBT group had more internal orthogonal structures, its difference in the bending properties between the major and minor strength directions was lower than that of the CLT group. Furthermore, the proposed contribution models quantitatively analyzed the relationship between the apparent bending moduli of the CLBT and CLT panels and the corresponding composition layer characteristics. The contribution model to characterize the apparent bending modulus in major and minor strength directions demonstrated good agreement with the test results. Based on this model interpreted by three-dimensional figures, the contribution variation characteristics in the major and minor strength directions were revealed.
Online Access
Free
Resource Link
Less detail

Innovations in mass timber lateral systems

https://research.thinkwood.com/en/permalink/catalogue3099
Year of Publication
2022
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Bailey, Dawson
Organization
Kansas State University
Year of Publication
2022
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Rocking Timber Walls
Lateral Systems
Post Tensioning
Research Status
Complete
Summary
As mass timber becomes increasingly popular in the United States and around the world, there comes more demand for mass timber in larger buildings. With this demand comes a necessity for these buildings to be able to withstand seismic forces; and in some locations, these forces can get quite high. Typical mass timber lateral systems (such as CLT shear walls) have worked fine for lower seismic forces and shorter buildings, but with this new demand comes a need for newer systems. Rocking timber walls is one of these systems. The goal of a rocking timber wall is to allow the lateral wall system to move in the case of high seismic force, thus reducing the loading the wall experiences. This is done with vertical post tensioning (PT) within cross-laminated timber panels (CLT). In addition, easily replaceable energy dissipation devices, such as U-shaped flexural plates (UFPs), allow for concentration of inelastic deformation during rocking of the walls, which keeps the CLT and PT components free from harm. Another system used to handle seismic load in tall mass timber structures are inter-story isolation systems. These systems can isolate the force at separate levels, effectively decreasing the load the foundation takes from the building's movement. Even newer than these systems is the Floor Isolated Re-centering Modular Construction System (FIRMOC), which utilizes rocking timber walls, inter-story isolation, and the addition of prefabricated modular mass timber to create a system capable of effectively and efficiently dealing with large seismic forces. This report seeks to present these innovative, capable, and effective lateral systems for seismic forces in large scale mass timber structures in a manner that provides understanding of how they work and what makes them effective.
Online Access
Free
Resource Link
Less detail

A study on beam-to-column moment-resisting timber connections under service load, comparing full-scale connection testing and mock-up frame assembly

https://research.thinkwood.com/en/permalink/catalogue3116
Year of Publication
2022
Topic
Connections
Application
Frames
Author
Vilguts, Aivars
Nesheim, Sveinung Ørjan
Stamatopoulos, Haris
Malo, Kjell Arne
Organization
Norwegian University of Science and Technology
Publisher
Springer
Year of Publication
2022
Format
Journal Article
Application
Frames
Topic
Connections
Keywords
Moment-resisting Connection
Semi-rigid Connection
Screwed-in Threaded Rods
Experimental Modal Analysis
Research Status
Complete
Series
European Journal of Wood and Wood Products
Summary
A new timber frame structural system consisting of continuous columns, prefabricated hollow box timber decks and beam-to-column moment-resisting connections is investigated. The hollow box timber decks allow long spans with competitive floor height and efficient material consumption. To achieve long spans, semi-rigid connections at the corners of deck elements are used to join the columns to the deck elements. In the present paper, experimental investigations of a semi-rigid moment-resisting connection and a mock-up frame assembly are presented. The semi-rigid connection consists of inclined screwed-in threaded rods and steel coupling parts, connected with friction bolts. Full-scale moment-resisting timber connections were tested under monotonic and cyclic loading to quantify rotational stiffness, energy dissipation and moment resistance. The mock-up frame assembly was tested under cyclic lateral loading and with experimental modal analysis. The lateral stiffness, energy dissipation, rotational stiffness of the connections and the eigen frequencies of the mock-up frame assembly were quantified based on the experimental tests in combination with a Finite Element model, i.e., the model was validated with experimental results from the rotational stiffness tests of the beam-to-column connections. Finally, the structural damping measured with experimental modal analysis was evaluated and compared with FE model using the material damping of timber parts and equivalent viscous damping of the moment-resisting connections.
Online Access
Free
Resource Link
Less detail

Design of a novel seismic retrofitting system for RC structures based on asymmetric friction connections and CLT panels

https://research.thinkwood.com/en/permalink/catalogue2912
Year of Publication
2022
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Aloisoio, Angelo
Boggian, Francesco
Tomasi, Roberto
Organization
Università degli Studi dell’Aquila
Università degli Studi di Trento
Norwegian University of Life Science
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Seismic
Keywords
Friction-based Device
Seismic Protection
Structural Design
Reinforced-concrete Structures
Research Status
Complete
Series
Engineering Structures
Summary
Friction-based dampers are a valid solution for non-invasive seismic retrofitting interventions of existing structures, particularly reinforced-concrete (RC) structures. The design of friction-based dampers is challenging: underestimating the slip force prevents the full use of the potential of the device, which attains the maximum admissible displacement earlier than expected. By contrast, overestimating the slip force may cause delayed triggering of the device when the structure has suffered extensive damage. Therefore, designing the appropriate slip force is an optimization problem. The optimal slip force guarantees the highest inter-story drift reduction. The authors formulated the optimization problem for designing a specific class of friction-based dampers, the asymmetric friction connection (AFC), devised as part of the ongoing multidisciplinary Horizon 2020 research project e-SAFE (Energy and Seismic AFfordable rEnovation solutions). The seismic retrofitting technology involves the external application of modular prefabricated cross-laminated timber (CLT) panels on existing external walls. Friction dampers connect the CLT panels to the beams of two consecutive floors. The friction depends on the mutual sliding of two metal plates, pressed against each other by preloaded bolts. This study determines the optimal slip force, which guarantees the best seismic performance of an RC structural archetype. The authors investigate the nonlinear dynamic response of a coupled mechanical system (RC frame-friction damper) under a set of strong-motion earthquakes, using non-differential hysteresis models calibrated on the experimental cyclic responses. The solution of the optimization leads to the proposal of a preliminary simplified design procedure, useful for practitioners.
Online Access
Free
Resource Link
Less detail

Behavior of timber-concrete composite with defects in adhesive connection

https://research.thinkwood.com/en/permalink/catalogue3108
Year of Publication
2022
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Buka-Vaivade, Karina
Serdjuks, Dmitrijs
Organization
Riga Technical University
Publisher
Elsevier
Year of Publication
2022
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Adhesive Connection
Rigid Connection
Conference
ICSI 2021 The 4th International Conference on Structural Integrity
Research Status
Complete
Series
Procedia Structural Integrity
Summary
Rigid timber to concrete connection is the most effective solution for timber-concrete composite members subjected to the flexure which provides full composite action and better structural behaviour. One of the most used technologies to produce glued connection of the timber-concrete composite is “dry” method, which includes gluing together of timber and precast concrete slab. This technique has high risk of forming a poor-quality rigid connection in timber-concrete composite, and there are difficulties in controlling the quality of the glued connection. The effect of the non-glued areas in connection between composite layers on the shear stresses and energy absorption were investigated by finite element method and laboratorian experiment. Three timber-concrete composite panels in combination with carbon fibre reinforced plastic composite tapes in the tension zone with the span 1.8 m were statically loaded till the failure by the scheme of three-point bending. Mid-span displacements were measured in the bending test. One specimen was produced by dry method, by gluing together cross-laminated timber panel and prefabricated concrete panel. Timber-concrete qualitative connection of the other two specimens was provided by the granite chips, which were glued on the surface of the cross-laminated timber by epoxy, and then wet concrete was placed. Dimensions of the crushed granite pieces changes within the limits from 16 to 25 mm. The investigated panel with different amount and sizes of non-glued areas in the timber to concrete connection was numerically modelled. Obtained results shown, that the increase of shear stresses is influenced not so much by a total amount of non-glued areas, but by the size of the individual defective areas. Moreover, large non-glued areas significantly reduce the energy absorption of elements subjected to the flexure, which was observed experimentally for defective panel produced by the classical dry method with almost 4 times larger mid-span displacements than for panel with full composite action provided by the proposed production technology of the timber to concrete rigid connection. So, the proposed technology based on the use of granite chips, provides a high-quality connection between timber and concrete layers, with insignificant ration between possible defect and total connection surface area, which is equal to the area of one granite chips edge.
Online Access
Free
Resource Link
Less detail

Market Survey of Timber Prefabricated Envelopes for New and Existing Buildings

https://research.thinkwood.com/en/permalink/catalogue2198
Year of Publication
2019
Topic
Design and Systems
Application
Building Envelope

Structural Performance of a Hybrid Timber Wall System for Emergency Housing Facilities

https://research.thinkwood.com/en/permalink/catalogue2745
Year of Publication
2021
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Hybrid Building Systems
Author
Casagrande, Daniele
Sinito, Ester
Izzi, Matteo
Pasetto, Gaia
Polastri, Andrea
Publisher
ScienceDirect
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Prefabrication
Modular
Emergency Housing
Temporary Building
Hybrid Timber Frame
Seismic Behaviour
Research Status
Complete
Series
Journal of Building Engineering
Summary
This paper presents an innovative and sustainable timber constructive system that could be used as an alternative to traditional emergency housing facilities. The system proposed in this study is composed of prefabricated modular elements that are characterized by limited weight and simple assembly procedures, which represent strategic advantages when it comes facing a strong environmental disaster (e.g. an earthquake). The complete dismantling of structural elements and foundations is granted thanks to specific details and an innovative connection system called X-Mini, capable of replacing traditional anchoring devices (i.e. hold downs and angle brackets) by resisting both shear and tension loads. This constructive system, denoted as Hybrid Timber Frame (HTF), takes advantage of the strong prefabrication, reduced weight of light-frame timber systems, and of the excellent strength properties of the Cross Laminated Timber (CLT) panels. Specifically, the solid-timber members typically used in the structural elements of light-frame systems are replaced by CLT linear elements. The results of experimental tests and numerical simulations are critically presented and discussed, giving a detailed insight into the performance of the HTF under seismic conditions.
Online Access
Free
Resource Link
Less detail

Advanced Industrialized Construction to Achieve High Building Energy Efficiency

https://research.thinkwood.com/en/permalink/catalogue2828
Year of Publication
2021
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2021
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Building Envelope
Topic
Energy Performance
Keywords
Prefabrication
Offsite Construction
Energy Efficiency
Retrofit
New Construction
Mid-Rise
Research Status
Complete
Series
InfoNote
Summary
Advanced industrialized construction methods enable complex building components and systems to be built with high precision and quality. This manufacturing technique has an advantage to provide cost-competitive and high energy efficient building components and systems for both retrofits and new construction. This document gives an overview of the use of prefabricated panels in building Net Zero Energy Ready wood-frame multi-unit residential buildings (MURBs) in Edmonton.
Online Access
Free
Resource Link
Less detail

142 records – page 1 of 8.