Skip header and navigation

Refine Results By

59 records – page 1 of 3.

Joint Professional Practice Guidelines: Encapsulated Mass Timber Construction up to 12 Storeys

https://research.thinkwood.com/en/permalink/catalogue2772
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
Architectural Institute of British Columbia (AIBC)
Engineers and Geoscientists British Columbia
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Acoustics
Structural
Design
Building Enclosure
Architecture
Quality Assurance
Building Code
Encapsulated Mass Timber Construction
Engineering
Fire Protection
Language
English
Research Status
Complete
Summary
These Joint Professional Practice Guidelines – Encapsulated Mass Timber Construction Up to 12 Storeys were jointly prepared by the Architectural Institute of British Columbia (AIBC) and Engineers and Geoscientists British Columbia. The AIBC and Engineers and Geoscientists BC regulate and govern the professions of architecture, engineering, and geoscience under the Architects Act and the Professional Governance Act. The AIBC and Engineers and Geoscientists BC each have a regulatory mandate to protect the public interest, which is met in part by setting and maintaining appropriate academic, experience, and professional practice standards. Engineering Professionals are required per Section 7.3.1 of the Bylaws - Professional Governance Act to have regard for applicable standards, policies, plans, and practices established by the government or by Engineers and Geoscientists BC, including professional practice guidelines. For Engineering Professionals, these professional practice guidelines clarify the expectations for professional practice, conduct, and competence when providing engineering services for EMTC buildings. For Architects, these guidelines provide important information and identify issues to be considered when providing architectural services for EMTC buildings. These guidelines deal with the performance of specific activities in a manner such that Architects and Engineering Professionals can meet their professional obligations under the Architects Act and the Professional Governance Act. These guidelines were developed in response to new classifications of building size and construction relative to occupancy introduced in the 2018 British Columbia Building Code (BCBC), under Division B, Article 3.2.2.48EMTC. Group C, up to 12 storeys, Sprinklered, and Article 3.2.2.57EMTC. Group D, up to 12 storeys, Sprinklered. These new classifications were introduced in Revision 2 of the 2018 BCBC on December 12, 2019 and in Amendment 12715 of the 2019 Vancouver Building By-law (VBBL) on July 1, 2020. Additionally, provisions related to Encapsulated Mass Timber Construction (EMTC) were introduced in Revision 1 of the 2018 British Columbia Fire Code (BCFC) on December 12, 2019. These guidelines were first published in 2021 to provide guidance on architectural and engineering considerations relating to these significant changes to the 2018 BCBC, the 2019 VBBL, and the 2018 BCFC. For Engineering Professionals, these guidelines are intended to clarify the expectations of professional practice, conduct, and competence when Engineering Professionals are engaged on an EMTC building. For Architects, these guidelines inform and support relevant competency standards of practice to be met when Architects are engaged on an EMTC building. As with all building and construction types, the EMTC-specific code provisions prescribe minimum requirements that must be met. The majority of EMTC of 7 to 12 storeys are considered High Buildings, and as such are subject to the BCBC, Subsection 3.2.6. Additional Requirements for High Buildings.
Online Access
Free
Resource Link
Less detail

Design Guide for Timber-Concrete Composite Floors in Canada

https://research.thinkwood.com/en/permalink/catalogue2460
Year of Publication
2020
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Material
Timber-Concrete Composite
Application
Floors
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Keywords
Shear Connection
Ultimate Limit States
Vibration
Fire Resistance
Language
English
Research Status
Complete
Summary
As part of its research work on wood buildings, FPInnovations has recently launched a Design Guide for Timber-Concrete Composite Floors in Canada. This technique, far from being new, could prove to be a cost-competitive solution for floors with longer-span since the mechanical properties of the two materials act in complementarity. Timber-concrete systems consist of two distinct layers, a timber layer and a concrete layer (on top), joined together by shear connectors. The properties of both materials are then better exploited since tension forces from bending are mainly resisted by the timber, while compression forces from bending are resisted by the concrete. This guide, which contains numerous illustrations and formulas to help users better plan their projects, addresses many aspects of the design of timber-concrete composite floors, for example shear connection systems, ultimate limit state design, vibration and fire resistance of floors, and much more.
Online Access
Free
Resource Link
Less detail

Tall Wood Buildings: Design, Construction and Performance

https://research.thinkwood.com/en/permalink/catalogue2483
Edition
Second Edition
Year of Publication
2020
Topic
General Information
Design and Systems
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Green, Michael
Taggart, Jim
Edition
Second Edition
Publisher
Birkhauser
Year of Publication
2020
Country of Publication
Switzerland
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
General Information
Design and Systems
Market and Adoption
Keywords
Tall Wood
Case Study
Building Systems
Built Projects
Language
English
Research Status
Complete
ISBN
978-3035618853
Summary
Tall wood buildings have been at the foreground of innovative building practice in urban contexts for a number of years. From London to Stockholm, from Vancouver to Melbourne timber buildings of up to 20 storeys have been built, are under construction or being considered. This dynamic trend was enabled by developments in the material itself, prefabrication and more flexibility in fire regulations. The low CO2 footprint of wood - often regionally sourced - is another strong argument in its favour. This publication explains the typical construction types such as panel systems, frame and hybrid systems. An international selection of 13 case studies is documented in detail with many specially prepared construction drawings, demonstrating the range of the technology.
Online Access
Payment Required
Resource Link
Less detail

Cross-Laminated Timber Design: Structural Properties, Standards, and Safety

https://research.thinkwood.com/en/permalink/catalogue2534
Year of Publication
2020
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Mahamid, Mustafa
Publisher
McGraw Hill
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural Design
Code Provisions
Design Recommendations
Sustainability
Environmental Issues
Language
English
Research Status
Complete
ISBN
1260117995
Summary
This comprehensive guide explains the design standards, code provisions, and safety requirements engineers need to know to use cross-laminated timber as a structural building material. The book covers all applicable design considerations, including the relevant structural load requirements and fire safety requirements. Written by a collection of experts in the field, Cross-Laminated Timber Design: Structural Properties, Standards, and Safety introduces the material properties of CLT and goes on to cover the recommended lateral and vertical design standards. Design examples and case studies are featured throughout. You will get design recommendations for connections, building envelopes, acoustics for CLT projects, and much more. Sustainability and environmental issues are discussed in full detail. - Covers the latest methods and design techniques being used for CLT - Explains the code provisions in the NDS, ASCE 7, and IBC that apply to CLT - Include contributions from some of the leading experts in the field
Online Access
Payment Required
Resource Link
Less detail

Construction Moisture Management, Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2685
Year of Publication
2020
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Topic
Moisture
Keywords
Wetting
Risk Mitigation
Drying
Language
English
Research Status
Complete
Summary
Cross-Laminated Timber (CLT) is an engineered mass timber product manufactured by laminating dimension lumber in layers with alternating orientation using structural adhesives. It is intended for use under dry service conditions and is commonly used to build floors, roofs, and walls. Because prolonged wetting of wood may cause staining, mould, excessive dimensional change (sometimes enough to fail connectors), and even result in decay and loss of strength, construction moisture is an important consideration when building with CLT. This document aims to provide technical information to help architects, engineers, and builders assess the potential for wetting of CLT during building construction and identify appropriate actions to mitigate the risk.
Online Access
Free
Resource Link
Less detail

Gestion de l'Humidité en Construction, Bois Lamellé-Croisé

https://research.thinkwood.com/en/permalink/catalogue2686
Year of Publication
2020
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Topic
Moisture
Keywords
Wetting
Risk Mitigation
Drying
Language
French
Research Status
Complete
Summary
Le bois lamellé-croisé (CLT) est un produit massif de bois d’ingénierie qui est fabriqué à partir de multiples pièces de bois de dimension assemblées en couches orthogonales avec des adhésifs structuraux. Ce produit est conçu pour des conditions de service sèches et est couramment utilisé pour construire des planchers, des toits et des murs. Comme l’humidification prolongée du bois peut causer des taches, de la moisissure, des variations dimensionnelles excessives (parfois suffisantes pour provoquer la défaillance des attaches), et même la pourriture et la perte de résistance, l’humidité est un facteur important dans la construction avec le CLT. Le présent document a pour but de fournir de l’information technique pouvant aider les architectes, les ingénieurs et les constructeurs à évaluer les risques d’humidification du CLT pendant la construction de bâtiments et à prendre les mesures appropriées pour atténuer ces risques.
Online Access
Free
Resource Link
Less detail

National Fire Code Requirements - Course of Construction: Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2759
Year of Publication
2020
Topic
Fire
Application
Wood Building Systems
Organization
Canadian Wood Council
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Application
Wood Building Systems
Topic
Fire
Keywords
National Building Code of Canada
Construction
Fire Safety
Fire Protection
Language
English
Research Status
Complete
Summary
The vulnerability of any building, regardless of the material used, in a fire situation is higher during the construction phase when compared to the susceptibility of the building after it has been completed and occupied. This is because the risks and hazards found on a construction site differ both in nature and potential impact from those in a completed building; and these risks are occurring at a time when the fire prevention elements that are designed to be part of the completed building are not yet in place. For these reasons, construction site fire safety includes some unique challenges. Developing an understanding of these hazards and their potential risks is the first step towards fire prevention and mitigation during the course of construction (CoC).
Online Access
Free
Resource Link
Less detail

CLT Handbook - Canadian Edition

https://research.thinkwood.com/en/permalink/catalogue819
Edition
2nd Edition
Year of Publication
2019
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
FPInnovations
Editor
Karacabeyli, Erol
Gagnon, Sylvain
Edition
2nd Edition
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Language
English
Research Status
Complete
Summary
The CLT Handbook provides vital “How to” information on CLT for the design and construction community, and is a great source of information for regulatory authorities, fire services and others. The CLT Handbook is also a good textbook for university level timber engineering courses. In summary, the Canadian CLT Handbook will remain the most comprehensive reference for sharing the latest technical information on North American CLT. The Canadian edition of the CLT Handbook, first published in 2011 under the Transformative Technologies Program of the Natural Resources Canada, played an imperative role in accelerating the use and acceptance of CLT in North America. Its introduction subsequently led to the publication of the US Edition. The Canadian Edition supported the early use of CLT products from Canadian manufacturers in many small to large projects across Canada and the US, and paved the way for CLT and other wood products to be used in new applications like tall and large buildings, and bridges. Since then, additional research has taken place globally and substantial regulatory changes have occurred enabling more wood to be used in construction. Those developments highlighted a need for the CLT Handbook to be updated. The 2019 Edition of the CLT Handbook, for example, augments the recently developed CLT provisions in CSA Standard in Engineering Design in Wood and it includes a design example of an 8-storey CLT building. It helps expand the knowledge base of the designers about CLT enabling them to develop alternative solutions for taller and larger buildings that are beyond the boundaries of the acceptable solutions in building codes.
Online Access
Free
Resource Link
Less detail

Illustrated Guide for Designing Wood-Frame Buildings in Alberta to Meet the National Energy Code of Canada for Buildings

https://research.thinkwood.com/en/permalink/catalogue1917
Year of Publication
2019
Topic
Design and Systems
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Application
Building Envelope
Topic
Design and Systems
Keywords
Building Codes
Energy Efficiency
Mid-Rise
Thermal
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Lumber-Based Mass Timber Products in Construction

https://research.thinkwood.com/en/permalink/catalogue2163
Year of Publication
2019
Topic
General Information
Material
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
CLT (Cross-Laminated Timber)

VaproShield Mass Timber Building Enclosure Design Guide

https://research.thinkwood.com/en/permalink/catalogue2347
Year of Publication
2019
Topic
Moisture
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Brown, Bailey
Finch, Graham
DiPlacido, Adam
Organization
RDH Building Science
Year of Publication
2019
Country of Publication
United States
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Design and Systems
Keywords
Mass Timber
Air Barrier Membrane
Roof Underlayments
Enclosure Design
Water-Resistive Barrier
Language
English
Research Status
Complete
Summary
Mass timber and CLT construction offers many advantages, such as enhanced modularity, reduced construction schedules, improved thermal performance, and material sustainability. However, mass timber’s propensity to absorb moisture from the environment and the relative vapor impermeability of CLT panels introduces unique challenges when incorporated with the building enclosure. These challenges should be considered during design and construction phases to ensure long-term performance. The VaproShield Mass Timber Building Enclosure Design Guideline covers the best practices for the design and construction of high-performance CLT wall and roof assemblies. RDH is the principal author and editor of the guide and within its capacity, we do not purport to endorse any specific material or technical matter within this guide.
Online Access
Free
Resource Link
Less detail

Illustrated Guide R30+ Effective Vaulted & Flat Roofs

https://research.thinkwood.com/en/permalink/catalogue2348
Year of Publication
2019
Topic
Moisture
Energy Performance
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Roofs
Author
Marleau, Christopher
Higgins, James
Ricketts, Lorne
Roppel, Patrick
Publisher
BC Housing Research Centre
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Material
Light Frame (Lumber+Panels)
Application
Roofs
Topic
Moisture
Energy Performance
Design and Systems
Keywords
Vaulted Roofs
Water-Shedding Roofs
Flat Waterproof Membrane Roofs
Thermal Performance
Moisture Management
Air Leakage
Durability
Language
English
Research Status
Complete
Summary
This Illustrated Guide consolidates information on vaulted water-shedding roofs and flat waterproof membrane roofs that are capable of meeting R-30 or greater effective thermal performance when used on low- and mid-rise wood-frame buildings. The guide is intended to be an industry, utility, and government resource with respect to meeting this thermal performance level, while not compromising other aspects of building enclosure performance, including moisture management, air leakage, and durability.
Online Access
Free
Resource Link
Less detail

Encapsulated Mass Timber Construction: Guidelines for Encapsulation Details and Techniques

https://research.thinkwood.com/en/permalink/catalogue2600
Year of Publication
2019
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Ranger, Lindsay
Geraghty, Simon
Jeske, Judy
Rahmani, Alma
Dorsey, Cheryl
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Encapsulated Mass Timber Construction
EMTC
Fire Protection
Construction Safety
Language
English
Research Status
Complete
Summary
The purpose of this guide is to provide an introduction to the concept of encapsulated mass timber construction. This guide provides an overview of encapsulation techniques for mass timber construction, and other related fire protection measures, and summarizes some approved encapsulation materials and application methods and identifies additional requirements for safety during construction. This guide is intended to help architects, engineers and designers by reducing uncertainty and allowing for more confidence in design, as well as providing authorities having jurisdiction and inspectors with a reference for simple design review.
Online Access
Free
Resource Link
Less detail

Guide to Calculating Airborne Sound Transmission in Buildings: Fifth Edition, December 2019

https://research.thinkwood.com/en/permalink/catalogue2617
Year of Publication
2019
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Author
Hoeller, Christoph
Quirt, David
Mahn, Jeffrey
Müller-Trapet, Markus
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Apparent Sound Transmission Class
Sound Insulation
Sound Transmission
Concrete
Building Code
Impact Sound
Language
English
Research Status
Complete
Summary
In recent years, the science and engineering for controlling sound transmission in buildings have shifted from a focus on individual assemblies such as walls or floors, to a focus on performance of the complete system. Standardized procedures for calculating the overall transmission, combined with standardized measurements to characterize sub-assemblies, provide much better prediction of sound transmission between adjacent indoor spaces. The International Standards Organization (ISO) has published a calculation method, ISO 15712-1 that uses laboratory test data for sub-assemblies such as walls and floors as inputs for a detailed procedure to calculate the expected sound transmission between adjacent rooms in a building. This standard works very well for some types of construction, but to use it in a North American context one must overcome two obstacles – incompatibility with the ASTM standards used by our construction industry, and low accuracy of its predictions for lightweight wood or steel frame construction. To bypass limitations of ISO 15712-1, this Guide explains how to merge ASTM and ISO test data in the ISO calculation procedure, and provides recommendations for applying extended measurement and calculation procedures for specific common types of construction. This Guide was developed in a project established by the National Research Council of Canada to support the transition of construction industry practice to using apparent sound transmission class (ASTC) for sound control objectives in the National Building Code of Canada (NBCC). However, the potential range of application goes beyond the minimum requirements of the NBCC – the Guide also facilitates design to provide enhanced sound insulation, and should be generally applicable to construction in both Canada and the USA. This publication contains a limited set of examples for several types of construction, to provide an introduction and overview of the ASTC calculation procedure. Additional examples and measurement data can be found in the companion documents to this Guide, namely NRC Research Reports RR-333 to RR-337. Furthermore, the calculation procedure outlined and illustrated in this Guide is also used by the software web application soundPATHS, which is available for free on the website of the National Research Council of Canada (see the references in Section 7 of this Guide for access details).
Online Access
Free
Resource Link
Less detail

Surface Flammability and Flame-spread Ratings

https://research.thinkwood.com/en/permalink/catalogue2757
Year of Publication
2019
Topic
Fire
Application
Walls
Ceilings
Floors
Organization
Canadian Wood Council
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Application
Walls
Ceilings
Floors
Topic
Fire
Keywords
Flame Spread
Flame Spread Rating
Surface Flammability
National Building Code of Canada
Testing Methods
Language
English
Research Status
Complete
Summary
The rate at which flame spreads on the exposed interior surfaces or a room or space can have an impact on the rate of fire growth within an area, especially if the materials of the exposed surfaces are highly flammable. Therefore, the National Building Code of Canada (NBC) regulates the surface flammability of any material that forms part of the interior surface of walls, ceilings and, in some cases, floors, in buildings. Based on a standard fire-test method, the NBC uses a rating system to quantify surface flammability that allows comparison of one material to another, and the ratings within that system are called flame-spread ratings (FSR).
Online Access
Free
Resource Link
Less detail

Fire Separations & Fire-resistance Ratings

https://research.thinkwood.com/en/permalink/catalogue2758
Year of Publication
2019
Topic
Fire
Application
Floors
Walls
Wood Building Systems
Organization
Canadian Wood Council
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Application
Floors
Walls
Wood Building Systems
Topic
Fire
Keywords
Fire Separations
Fire-Resistance Ratings
National Building Code of Canada
Barriers
Fire Spread
Testing Methods
Language
English
Research Status
Complete
Summary
Fire separations and fire-resistance ratings are often required together but they are not interchangeable terms, nor are they necessarily mutually inclusive. The National Building Code of Canada (NBC)1 provides the following definitions: A fire separation is defined as “a construction assembly that acts as a barrier against the spread of fire.” A fire-resistance rating is defined as “the time in minutes or hours that a material or assembly of materials will withstand the passage of flame and the transmission of heat when exposed to fire under specified conditions of test and performance criteria, or as determined by extension or interpretation of information derived therefrom as prescribed in [the NBC].” In many buildings, the structural members such as beams and columns, and structural or non-structural assemblies such as walls and floors, are required to exhibit some degree of resistance to fire in order to prevent the spread of fire and smoke, and/or to minimize the risk of collapse of the building in the event of a fire. However, fire separations are assemblies that may or may not be required to have a specific fire-resistance rating, while structural members such as beams and columns that require a fireresistance rating to maintain the structural stability of a building in the event of a fire are not fire separations because they do not “act as a barrier against the spread of fire.”
Online Access
Free
Resource Link
Less detail

Acoustical Guide: Acoustic Research Report on Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1839
Year of Publication
2018
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Other Materials
Application
Floors

Design of Timber-Concrete Composite Structures

https://research.thinkwood.com/en/permalink/catalogue1936
Year of Publication
2018
Topic
Mechanical Properties
Connections
Serviceability
Design and Systems
Material
Timber-Concrete Composite

59 records – page 1 of 3.