Skip header and navigation

Refine Results By

63 records – page 1 of 7.

Mass Timber Design Manual Vol. 2

https://research.thinkwood.com/en/permalink/catalogue2992
Year of Publication
2022
Topic
General Information
Design and Systems
Application
Wood Building Systems
Publisher
Think Wood
WoodWorks
Year of Publication
2022
Format
Book/Guide
Application
Wood Building Systems
Topic
General Information
Design and Systems
Keywords
Mass Timber Products
Tall Timber Buildings
Sustainability
Research Status
Complete
Summary
From record-breaking timber towers to innovative examples of adaptive reuse, mass timber construction is on the rise. Stay current with Think Wood and WoodWorks’ newly updated, must-have Volume 2 of the popular Mass Timber Design Manual. Volume 2 features updated free and interactive resources to guide architects, developers, engineers, and anyone working on a mass timber project. This manual is helpful for experts and novices alike. Whether you’re new to mass timber or an early adopter you’ll benefit from its comprehensive summary of the most up to date resources on topics from mass timber products and applications to tall wood construction and sustainability. The manual’s content includes WoodWorks technical papers, Think Wood continuing education articles, case studies, expert Q&As, technical guides and other helpful tools. Click through to view each individual resource or download the master resource folder for all files in one handy location. For your convenience, this book will be updated regularly as mass timber product development and the market are quickly evolving.
Online Access
Free
Resource Link
Less detail

Technical Guide for the Design and Construction of Tall Wood Buildings in Canada

https://research.thinkwood.com/en/permalink/catalogue3034
Edition
Second Edition
Year of Publication
2022
Topic
Design and Systems
Application
Wood Building Systems
Organization
FPInnovations
Editor
Karacabeyli, Erol
Lum, Conroy
Edition
Second Edition
Year of Publication
2022
Format
Book/Guide
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Engineered Wood Products
Mass Timber Construction
Tall Wood Buildings
Hybrid Tall Wood Buildings
Cost
Sustainability
Serviceability
Seismic
Fire Safety
Building Enclosure
Prefabrication
Monitoring
Maintenance
Research Status
Complete
Summary
Since the publication of the first edition of this guide, substantial regulatory changes have been implemented in the 2020 edition of the National Building Code of Canada: the addition of encapsulated mass timber construction up to 12 storeys, and the early adoption of the related provisions by several provinces are the most notable ones. The 2022 edition of this guide brings together, under one cover, the experience gained from recently built tall wood projects, highlights from the most recent building codes and standards, and research findings to help achieve the best environmental, structural, fire, and durability performance of mass timber products and systems, including their health benefits. The approaches to maximizing the benefits of prefabrication and building information modelling, which collectively result in fast, clean, and quiet project delivery, are discussed. Methods for addressing limitations controlled by fire requirements (through an Alternative Solution) or seismic requirements (through a hybrid solution using an Acceptable Solution in steel or concrete) are included. How best to build with mass timber to meet the higher performance requirements of the Energy Step Codes is also discussed. What makes building in wood a positive contribution toward tackling climate change is discussed so that design teams, in collaboration with building owners, can take the steps necessary to meet either regulatory or market requirements.
Online Access
Free
Resource Link
Less detail

Making Mass Timber Work for High-Rise Residential in BC - The Developers’ Guide to Cost, Schedule & Code Implications

https://research.thinkwood.com/en/permalink/catalogue3164
Year of Publication
2022
Topic
Cost
General Information
Market and Adoption
Design and Systems
Author
McDonough, Mike
Bellisomo, Andrea
Campbell, Andrew
Souza, Renato
Jackson, Nicholas
Lee, Roy
Wilson, Rob
Cotter, Patrick
Mittal, Kaanshika
Falls, Connor
Johnson, William
Dionne, Ivan
Jacques, Chris
Carson, Andy
Wilson, Daniel
Noussis, Thomas
Marks, Pauls
Harmsworth, Andrew
Organization
Axiom Builders Inc.
BTY Group
WSP
ZGF Architects Inc.
Year of Publication
2022
Format
Book/Guide
Topic
Cost
General Information
Market and Adoption
Design and Systems
Keywords
Cost
Schedule
Construction Method
Code Implications
Research Status
Complete
Notes
Industry Contributors:
Francis, Glenn (Termel Industries Ltd.)
Kalesnikoff
Element5
Structurelam Mass Timber Corporation
Summary
Mass timber continues to be a hot topic of discussion within the development industry in British Columbia. The International Building Code now allows for mass timber to be used for buildings up to 18 storeys. The change allows developers to consider it for residential multi-family projects and prompts one big question: “What will it cost to build my high-rise project with mass timber in our market?” The team that developed this report represents an independent team of architects, structural engineers, quantity surveyors, and a general contractor. Consultants from fire, building code, and acoustic industries also provided expertise to the study. In late Fall 2020, we formed an industry group in Vancouver to answer this question with an exclusive focus on the local market. We identified a need for a significant shift in the local industry’s building philosophy when using mass timber as a structural material. Our goal was to assess the viability of mass timber for this product type in British Columbia by comparing the cost, construction methods, and schedules of a typical concrete high-rise in Vancouver to those for the same building using mass timber as the principal structural material. To undertake the study, the group created virtual models of the base building and conceptual models for side-by-side detailed comparisons. While gaining in popularity, building a high-rise with engineered mass timber remains an unconventional method in British Columbia. To support the industry, we wanted to fill in gaps in data to better understand and help solve the challenges of working with new materials and techniques needed for mass timber construction at scale. This study presents what we learned about cost, schedule, and code implications as well as methodology efficiencies. It must be noted that the study took place over a period in Q2 and Q3 of 2021 when lumber and steel prices – two of the principal materials – experienced high volatility in supply and record increases in price. Since every building project and market is unique, the report makes no claims concerning specific cost or time frame. Rather, it identifies what to consider in creating a reliable framework for optimizing costs and schedules while meeting code requirements when building residential high-rise mass timber buildings.
Online Access
Free
Resource Link
Less detail

EXPAN Timber Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue3301
Year of Publication
2022
Material
Timber-Concrete Composite
Author
Gerber, Christophe
Crews, Keith
Shrestha, Rijun
Organization
Wood Solutions
Year of Publication
2022
Format
Book/Guide
Material
Timber-Concrete Composite
Keywords
Acoustic Performance
Manufacturing
Holes in Timber Joists
Research Status
Complete
Summary
Timber concrete composite (TCC) floor systems are relatively new to Australia and satisfactory performance requires a rigorous design procedure addressing both ultimate and serviceability limit states. TCC structures have a degree of complexity, since they combine two materials that have very different mechanical properties and respond in different ways to their environment. In addition, most TCC structures exhibit partial (not full) composite action. There are several design procedures for TCC structures. Among these, the Eurocode 5 (EC5) procedure is relatively straightforward and has been successfully implemented in Europe. It uses a simplification for modelling the complex timber–concrete interaction known as the ‘Gamma coefficients’ method, which manipulates properties of the concrete member to predict the cross-section characteristics of the structure. This Guide presents a design procedure for TCC floor structures that is based on the Gamma method and AS 1720.1 Timber structures Part 1: Design methods. The Eurocode 5 approach has been adopted as the underlying basis for the design procedures presented in this document; modified to comply with current design codes and practices in Australia. It comprises normative parameters for the strength and safety (ultimate limit state) and informative guidelines for appearance, deflection limits and comfort of users (serviceability limit states). While the latter must be defined by designers to meet the specific functional requirements of the floor under consideration, it is recommended that the serviceability guidelines in this document should be adopted as a minimum standard for TCC floors. At the time of publication of this Guide, there is still uncertainty about some aspects of long-term deflection of TCC floors. As such, it is recommended that designers exercise caution when applying the design procedures contained in this document to floors exceeding 8 m in span, utilising the notched connections and crossed screws. This caveat restriction is due to a lack of research data at this stage to support the behaviour of floors and connections for spans exceeding 8 m. Some general considerations for manufacturing the notched connections are presented in this Guide.
Online Access
Free
Resource Link
Less detail

Joint Professional Practice Guidelines: Encapsulated Mass Timber Construction up to 12 Storeys

https://research.thinkwood.com/en/permalink/catalogue2772
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
Architectural Institute of British Columbia (AIBC)
Engineers and Geoscientists British Columbia
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Acoustics
Structural
Design
Building Enclosure
Architecture
Quality Assurance
Building Code
Encapsulated Mass Timber Construction
Engineering
Fire Protection
Research Status
Complete
Summary
These Joint Professional Practice Guidelines – Encapsulated Mass Timber Construction Up to 12 Storeys were jointly prepared by the Architectural Institute of British Columbia (AIBC) and Engineers and Geoscientists British Columbia. The AIBC and Engineers and Geoscientists BC regulate and govern the professions of architecture, engineering, and geoscience under the Architects Act and the Professional Governance Act. The AIBC and Engineers and Geoscientists BC each have a regulatory mandate to protect the public interest, which is met in part by setting and maintaining appropriate academic, experience, and professional practice standards. Engineering Professionals are required per Section 7.3.1 of the Bylaws - Professional Governance Act to have regard for applicable standards, policies, plans, and practices established by the government or by Engineers and Geoscientists BC, including professional practice guidelines. For Engineering Professionals, these professional practice guidelines clarify the expectations for professional practice, conduct, and competence when providing engineering services for EMTC buildings. For Architects, these guidelines provide important information and identify issues to be considered when providing architectural services for EMTC buildings. These guidelines deal with the performance of specific activities in a manner such that Architects and Engineering Professionals can meet their professional obligations under the Architects Act and the Professional Governance Act. These guidelines were developed in response to new classifications of building size and construction relative to occupancy introduced in the 2018 British Columbia Building Code (BCBC), under Division B, Article 3.2.2.48EMTC. Group C, up to 12 storeys, Sprinklered, and Article 3.2.2.57EMTC. Group D, up to 12 storeys, Sprinklered. These new classifications were introduced in Revision 2 of the 2018 BCBC on December 12, 2019 and in Amendment 12715 of the 2019 Vancouver Building By-law (VBBL) on July 1, 2020. Additionally, provisions related to Encapsulated Mass Timber Construction (EMTC) were introduced in Revision 1 of the 2018 British Columbia Fire Code (BCFC) on December 12, 2019. These guidelines were first published in 2021 to provide guidance on architectural and engineering considerations relating to these significant changes to the 2018 BCBC, the 2019 VBBL, and the 2018 BCFC. For Engineering Professionals, these guidelines are intended to clarify the expectations of professional practice, conduct, and competence when Engineering Professionals are engaged on an EMTC building. For Architects, these guidelines inform and support relevant competency standards of practice to be met when Architects are engaged on an EMTC building. As with all building and construction types, the EMTC-specific code provisions prescribe minimum requirements that must be met. The majority of EMTC of 7 to 12 storeys are considered High Buildings, and as such are subject to the BCBC, Subsection 3.2.6. Additional Requirements for High Buildings.
Online Access
Free
Resource Link
Less detail

Mass Timber Design Manual

https://research.thinkwood.com/en/permalink/catalogue2780
Year of Publication
2021
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Organization
WoodWorks
Think Wood
Year of Publication
2021
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Keywords
Mass Timber
United States
Building Systems
Tall Wood
Sustainability
IBC
Applications
Research Status
Complete
Summary
This manual is helpful for experts and novices alike. Whether you’re new to mass timber or an early adopter you’ll benefit from its comprehensive summary of the most up to date resources on topics from mass timber products and applications to tall wood construction and sustainability. The manual’s content includes WoodWorks technical papers, Think Wood continuing education articles, case studies, expert Q&As, technical guides and other helpful tools. Click through to view each individual resource or download the master resource folder for all files in one handy location. For your convenience, this book will be updated annually as mass timber product development and the market are quickly evolving.
Online Access
Free
Resource Link
Less detail

Mass Timber Building Science Primer

https://research.thinkwood.com/en/permalink/catalogue2797
Year of Publication
2021
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Kesik, Ted
Martin, Rosemary
Organization
Mass Timber Institute
RDH Building Science
Publisher
Mass Timber Institute
Year of Publication
2021
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Keywords
Mass Timber
Building Science
Research Status
Complete
Summary
The development of this primer commenced shortly after the 2018 launch of the Mass Timber Institute (MTI) centered at the University of Toronto. Funding for this publication was generously provided by the Ontario Ministry of Natural Resources and Forestry. Although numerous jurisdictions have established design guides for tall mass timber buildings, architects and engineers often do not have access to the specialized building science knowledge required to deliver well performing mass timber buildings. MTI worked collaboratively with industry, design professionals, academia, researchers and code experts to develop the scope and content of this mass timber building science primer. Although provincially funded, the broader Canadian context underlying this publication was viewed as the most appropriate means of advancing Ontario’s nascent mass timber building industry. This publication also extends beyond Canada and is based on universally applicable principles of building science and how these principles may be used anywhere in all aspects of mass timber building technology. Specifically, these guidelines were developed to guide stakeholders in selecting and implementing appropriate building science practices and protocols to ensure the acceptable life cycle performance of mass timber buildings. It is essential that each representative stakeholder, developer/owner, architect/engineer, supplier, constructor, wood erector, building official, insurer, and facility manager, understand these principles and how to apply them during the design, procurement, construction and in-service phases before embarking on a mass timber building project. When mass timber building technology has enjoyed the same degree of penetration as steel and concrete, this primer will be long outdated and its constituent concepts will have been baked into the training and education of design professionals and all those who fabricate, construct, maintain and manage mass timber buildings. One of the most important reasons this publication was developed was to identify gaps in building science knowledge related to mass timber buildings and hopefully to address these gaps with appropriate research, development and demonstration programs. The mass timber building industry in Canada is still a collection of seedlings that continue to grow and as such they deserve the stewardship of the best available building science knowledge to sustain them until such time as they become a forest that can fend for itself.
Online Access
Free
Resource Link
Less detail

U.S. Mass Timber Construction Manual

https://research.thinkwood.com/en/permalink/catalogue2873
Year of Publication
2021
Topic
General Information
Site Construction Management
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Organization
WoodWorks
Year of Publication
2021
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Topic
General Information
Site Construction Management
Keywords
Preconstruction
Moisture Control
Installation
Close-out
Research Status
Complete
Summary
The U.S. Mass Timber Construction Manual was developed to give contractors and installers a framework for the planning, procurement, and management of mass timber projects, and to provide a bridge from their experience with other systems. Mass timber is unique in that it draws installation techniques from other construction types, so people with concrete, precast, tilt-up, and structural steel experience can readily adapt to these materials. However, understanding how mass timber differs from other building systems is key to cost effectiveness. The manual was produced with primary funding from the U.S. Endowment for Forestry and Rural Communities, in collaboration with WoodWorks’ mass timber manufacturing partners in the U.S. and Canada. While intended primarily for GCs and installers, it is a useful reference for all members of a mass timber project team and anyone interested in the construction of mass timber buildings.
Online Access
Free
Resource Link
Less detail

U.S. Mass Timber Floor Vibration Design Guide

https://research.thinkwood.com/en/permalink/catalogue2874
Year of Publication
2021
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Organization
WoodWorks
Year of Publication
2021
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Floor Vibration
Vibration Design Methods
Finite Element Modeling
Research Status
Complete
Summary
The scope of this guide focuses on the design of mass timber floor systems to limit human-induced vibration. The primary performance goal is to help designers achieve a low probability of adverse comment regarding floor vibrations in a manner consistent with the vibration design guides for steel and concrete systems. This includes excitation primarily from human walking as observed by other people in the building. Some treatment of design for sensitive equipment in response to human walking is also discussed. This design guide covers the range of currently available mass timber panels, including cross-laminated timber (CLT) manufactured from either solid sawn or structural composite lumber (SCL) laminations, nail-laminated timber (NLT), dowel laminated timber (DLT) and glue-laminated timber (GLT), as well as their support framework of timber beams. The target user of this guide is a design professional with working knowledge of mass timber structural design and some background knowledge of structural dynamics as related to floor vibrations. It may be particularly useful to design engineers with limited experience with vibration analysis, experienced multi-material engineers familiar with vibration analysis but unfamiliar with mass timber vibration, and applications engineers assisting manufacturers in the development of solutions and proposals for projects.
Online Access
Free
Resource Link
Less detail

Insurance for Mass Timber Construction: Assessing Risk and Providing Answers

https://research.thinkwood.com/en/permalink/catalogue2875
Year of Publication
2021
Topic
General Information
Market and Adoption
Fire
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
McLain, Richard
Brodahl, Susan
Organization
WoodWorks
Year of Publication
2021
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
General Information
Market and Adoption
Fire
Keywords
Insurance
Fire Risk
Water Damage Mitigation
Site Security
Construction Schedule
Research Status
Complete
Summary
This paper is intended for developers and owners seeking to purchase insurance for mass timber buildings, for design/construction teams looking to make their designs and installation processes more insurable, and for insurance industry professionals looking to alleviate their concerns about safety and performance. For developers, owners and design/construction teams, it provides an overview of the insurance industry, including its history, what affects premiums, how risks are analyzed, and how project teams can navigate coverage for mass timber buildings. Insurance in general can seem like a mystery—what determines premium fluctuations, impacts of a strong vs. weak economy, and the varying roles of brokers, agents and underwriters. This paper will explain all of those aspects, focusing on the unique considerations of mass timber projects and steps that can be taken to make these buildings more insurable. For insurance brokers, underwriters and others in the industry, this paper provides an introduction to mass timber, including its growing use, code recognition and common project typologies. It also covers available information on fire performance and post-fire remediation, moisture impacts on building longevity, and items to watch for when reviewing specific projects.
Online Access
Free
Resource Link
Less detail

63 records – page 1 of 7.