Skip header and navigation

6 records – page 1 of 1.

Effects of Exposed Cross Laminated Timber on Compartment Fire Dynamics

https://research.thinkwood.com/en/permalink/catalogue1340
Year of Publication
2017
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Author
Hadden, Rory
Bartlett, Alastair
Hidalgo, Juan
Santamaria, Simón
Wiesner, Felix
Bisby, Luke
Deeny, Susan
Lane, Barbara
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Topic
Fire
Keywords
Compartment Fires
Heat Release Rate
Temperature
Exposed Timber
Auto-Extinction
Combustible Material
Heat Transfer
Language
English
Research Status
Complete
Series
Fire Safety Journal
Summary
A series of compartment fire experiments has been undertaken to evaluate the impact of combustible cross laminated timber linings on the compartment fire behaviour. Compartment heat release rates and temperatures are reported for three configuration of exposed timber surfaces. Auto-extinction of the compartment was observed in one case but this was not observed when the experiment was repeated under identical condition. This highlights the strong interaction between the exposed combustible material and the resulting fire dynamics. For large areas of exposed timber linings heat transfer within the compartment dominates and prevents auto-extinction. A framework is presented based on the relative durations of the thermal penetration time of a timber layer and compartment fire duration to account for the observed differences in fire dynamics. This analysis shows that fall-off of the charred timber layers is a key contributor to whether auto-extinction can be achieved.
Online Access
Free
Resource Link
Less detail

Large-scale compartment fires to develop a self-extinction design framework for mass timber—Part 1: Literature review and methodology

https://research.thinkwood.com/en/permalink/catalogue2911
Year of Publication
2022
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Xu, Hangyu
Pope, Ian
Gupta, Vinny
Cadena, Jaime
Carrascal, Jeronimo
Lange, David
McLaggan, Martyn
Mendez, Julian
Osorio, Andrés
Solarte, Angela
Soriguer, Diana
Torero, Jose
Wiesner, Felix
Zaben, Abdulrahman
Hidalgo, Juan
Organization
The University of Queesland
University of College London
The University of Edinburgh
Publisher
Elsevier
Year of Publication
2022
Country of Publication
Australia
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Performance-based Design
Compartment Fires
Heat Transfer
Pretection of Wood
Large-scale
Mass Timber
Language
English
Research Status
Complete
Series
Fire Safety Journal
Summary
Fire safety remains a major challenge for engineered timber buildings. Their combustible nature challenges the design principles of compartmentation and structural integrity beyond burnout, which are inherent to the fire resistance framework. Therefore, self-extinction is critical for the fire-safe design of timber buildings. This paper is the first of a three-part series that seeks to establish the fundamental principles underpinning a design framework for self-extinction of engineered timber. The paper comprises: a literature review introducing the body of work developed at material and compartment scales; and the design of a large-scale testing methodology which isolates the fundamental phenomena to enable the development and validation of the required design framework. Research at the material scale has consolidated engineering principles to quantify self-extinction using external heat flux as a surrogate of the critical mass loss rate, and mass transfer or Damköhler numbers. At the compartment scale, further interdependent, complex phenomena influencing self-extinction occurrence have been demonstrated. Time-dependent phenomena include encapsulation failure, fall-off of charred lamellae and the burning of the movable fuel load, while thermal feedback is time-independent. The design of the testing methodology is described in reference to these fundamental phenomena.
Online Access
Free
Resource Link
Less detail

Needs for Total Fire Engineering of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1674
Year of Publication
2016
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bartlett, Alastair
Wiesner, Felix
Hadden, Rory
Bisby, Luke
Lane, Barbara
Lawrence, Andrew
Palma, Pedro
Frangi, Andrea
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Fire Safety
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3888-3897
Summary
Fire safety is widely perceived as a barrier to implementation of tall timber buildings, particularly for engineered mass timber buildings with significant areas of exposed timber and timber structural framing. This negative perception is exacerbated by a lack of scientific data or experimental evidence on a range of potentially important issues that must be properly understood to undertake rational, performance-based engineering design of such structures. With the goal of delivering fully engineered structural fire designs, this paper presents and discusses a framework for using scientific knowledge, along with fire engineering tools and methods, to enable the design of timber buildings such that, when subject to real fire loads, their performance is quantified. The steps in this framework are discussed with reference to the available literature, in an effort to highlight areas where additional knowledge and tools are needed.
Online Access
Free
Resource Link
Less detail

Structural Capacity in Fire of Laminated Timber Elements in Compartments with Exposed Timber Surfaces

https://research.thinkwood.com/en/permalink/catalogue2105
Year of Publication
2019
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Rooms

Structural Capacity of One-Way Spanning Large-Scale Cross-Laminated Timber Slabs in Standard and Natural Fires

https://research.thinkwood.com/en/permalink/catalogue2734
Year of Publication
2021
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Author
Wiesner, Felix
Bartlett, Alastair
Mohaine, Siyimane
Robert, Fabienne
McNamee, Robert
Mindeguia, Jean-Christophe
Bisby, Luke
Organization
University of Queensland
The University of Edinburgh
CERIB Fire Testing Centre
Brandskyddslaget
University of Bordeaux
Publisher
Springer
Year of Publication
2021
Country of Publication
Australia
United Kingdom
France
Sweden
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Topic
Fire
Mechanical Properties
Keywords
Deflection
Temperature
Load Bearing Capacity
Ventilation
Fire Safety
Language
English
Research Status
Complete
Series
Fire Technology
Summary
This paper describes selected observations, measurements, and analysis from a series of large-scale experiments on cross-laminated timber (CLT) slabs that were exposed to fire from below, using four different heating scenarios, with a sustained mechanical loading of 6.3 kN m per metre width of slab. The deflection response and in-depth timber temperatures are used to compare the experimental response against a relatively simple structural fire model to assess the load bearing capacity of CLT elements in fire, including during the decay phase of natural fires. It is demonstrated that the ventilation conditions in experiments with a fixed fuel load are important in achieving burnout of the contents before structural collapse occurs. A mechanics-based structural fire model is shown to provide reasonably accurate predictions of structural failure (or lack thereof) for the experiments presented herein. The results confirm the importance of the ventilation conditions on the fire dynamics, burning duration, and the achievement of functional fire safety objectives (i.e. maintaining stability and compartmentation), in compartments with exposed CLT.
Online Access
Free
Resource Link
Less detail

Structural Response of Cross-Laminated Timber Compression Elements Exposed to Fire

https://research.thinkwood.com/en/permalink/catalogue1338
Year of Publication
2017
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Wiesner, Felix
Randmael, Fredrik
Wan, Wing
Bisby, Luke
Hadden, Rory
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Mechanical Properties
Keywords
Reduced Cross-Section Method
Axial Load
Compressive Load
Deformation
Temperature
Zero-Strength Layer
Language
English
Research Status
Complete
Series
Fire Safety Journal
Summary
A set of novel structural fire tests on axially loaded cross-laminated timber (CLT) compression elements (walls), locally exposed to thermal radiation sufficient to cause sustained flaming combustion, are presented and discussed. Test specimens were subjected to a sustained compressive load, equivalent to 10 % or 20 % of their nominal ambient axial compressive capacity. The walls were then locally exposed to a nominal constant incident heat flux of 50 kW/m2 over their mid height area until failure occurred. The axial and lateral deformations of the walls were measured and compared against predictions calculated using a finite Bernoulli beam element analysis, to shed light on the fundamental mechanics and needs for rational structural design of CLT compression elements in fire. For the walls tested herein, failure at both ambient and elevated temperature was due to global buckling. At high temperature failure results from excessive lateral deflections and second order flexural effects due to reductions the walls’ effective crosssection and flexural rigidity, as well as a shift of the effective neutral axis in bending during fire. Measured average one-dimensional charring rates ranged between 0.82 and 1.0 mm/min in these tests. As expected, the lamellae configuration greatly influenced the walls’ deformation responses and times to failure; with 3- ply walls failing earlier than those with 5-plies. The walls’ deformation response during heating suggests that, if a conventional reduced cross section method (RCSM), zero strength layer analysis were undertaken, the required zero strength layer depths would range between 15.2 mm and 21.8 mm. Deflection paths further suggest that the concept of a zero strength layer is inadequate for properly capturing the mechanical response of fire-exposed CLT compression elements.
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.