This paper presents an integrated design tool for structures composed of engineered timber panels that are connected by traditional wood joints. Recent advances in computational architecture have permitted to automate the fabrication and assembly of such structures using Computer Numerical Control (CNC) machines and industrial robotic arms. While several large-scale demonstrators have been realized, most developed algorithms are closed-source or project-oriented. The lack of a general framework makes it difficult for architects, engineers and designers to effectively manipulate this innovative construction system. Therefore, this research aims at developing a holistic design tool targeting a wide range of architectural applications. Main achievements include: (1) a new data structure to deal with modular assemblies, (2) an analytical parametrization of the geometry of five timber joints, (3) a method to generate CNC toolpath while integrating fabrication constraints, and (4) a method to automatically compute robot trajectories for a given stack of timber plates.
The widely available automated prefabrication in timber construction companies, as well as modern CAD software with application programing interfaces, allow for the design and production of increasingly geometrically complex building components. This development also enables and demands at the same time advanced joinery techniques. Analog to the developments in timber framing, this article presents the adaptation of a traditional wood-wood joinery technique from cabinetmaking, on the casestudy of a shell structure built from curved cross-laminated timber (CLT) panels. The dovetail-joints allow for a load-bearing glued joint between the CLT panels. They provide an aesthetic, visible connection and simplify the assembly through their integrated locator features.
Timber plate structures with integral mechanical attachments have been successfully built in the last decades. Previous research has highlighted the influence of these connections in the global behavior of the structures. Double-layered plate shells are one of the latest applications of integral joints. Their fabrication and assembly has been proven efficient. However, their structural behavior remains unknown. Simplified models are required to predict their behavior since an individual detailed modelling of the large amount of joints would be time-consuming and computationally expensive. Current simplifications involve either considering the connections as rigid or hinged and do not allow accurate prediction of their behavior. In this paper, a numerical finite element model in which the semi-rigid behavior of the joints is modeled by means of springs is presented for a double-layered timber plate structure made of 5 by 3 segments. The numerical model is automatically generated in the finite element software AbaqusTM from a simplified geometry. Numerical results are compared to a three-point bending test performed on two specimens. The developed spring model shows promising results for its application to a full double-layered timber plate shell. Only axial and shear stiffnesses were implemented in this model while the other degrees of freedom were considered rigid. This consideration might lead to an overly stiff model.
The current study uses knowledge from digital architecture, computer science, engineering informatics, and structural engineering to formulate an algorithmic framework for integrated Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) of Integrally-Attached Timber Plate (IATP) structures. The algorithm is designed to take the CAD 3D geometry of an IATP structure as input and automates the construction and analysis of the corresponding CAE model using a macroscopic element, which is an alternative to continuum Finite Element (FE) models. Each component of the macro model is assigned a unique tag that is linked to the relevant geometric and structural parameters. The CAE model integrity is maintained through the use of the common data model (CDM) concept and object-oriented programming. The relevant algorithms are implemented in Rhinoceros 3D using RhinoCommon, a .NET software development kit. Once the CAE macro model is generated, it is introduced to the OpenSees computational platform for structural analysis. The algorithmic framework is demonstrated using two case structures: a prefabricated timber beam with standard geometry and a free-form timber plate arch. The results are verified with measurements from physical experiments and FE models, where the time needed to convert thousands of CAD assemblies to the corresponding CAE models for response simulation is considerably reduced.
Folded-plate structures provide an efficient design using thin laminated veneer lumber panels. Inspired by Japanese furniture joinery, the multiple tab-and-slot joint was developed for the multi-assembly of timber panels with non-parallel edges without adhesive or metal joints. Because the global analysis of our origami structures reveals that the rotational stiffness at ridges affects the global behaviour, we propose an experimental and numerical study of this linear interlocking connection. Its geometry is governed by three angles that orient the contact faces. Nine combinations of these angles were tested and the rotational slip was measured with two different bending set-ups: closing or opening the fold formed by two panels. The non-linear behaviour was conjointly reproduced numerically using the finite element method and continuum damage mechanics.
The objective of this study is to experimentally analyse effects of geometry variations of Multiple Tab and Slot Joint (MTSJ) connection with dovetail design on shear mechanical behaviour. Direct shear test was performed on angular ( = 90° ) MTSJ connection made of Kerto-Q 21mm-thick spruce plywood laminated veneer lumber (LVL) panels. Connection was examined in its configuration of three tabs/slots per edge. Nine different geometries of MTSJ connection were tested. In order to provide better understanding of mechanical behaviour of the connection, results were compared with finger joint (F) connection. Two characteristic failure modes were observed. Influence of three theta angles which define geometry of MTSJ connection was analysed concerning shear strength and stiffness. Connection showed very ductile shear behaviour with relatively high stiffness. It has been shown that by increasing q 3 angle above 30°, shear strength decreases. On the other hand, the highest influence on shear stiffness is due to q 2 and q 3 rotations.