Skip header and navigation

25 records – page 1 of 3.

Advanced Industrialized Construction to Achieve High Building Energy Efficiency

https://research.thinkwood.com/en/permalink/catalogue2828
Year of Publication
2021
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Building Envelope
Topic
Energy Performance
Keywords
Prefabrication
Offsite Construction
Energy Efficiency
Retrofit
New Construction
Mid-Rise
Language
English
Research Status
Complete
Series
InfoNote
Summary
Advanced industrialized construction methods enable complex building components and systems to be built with high precision and quality. This manufacturing technique has an advantage to provide cost-competitive and high energy efficient building components and systems for both retrofits and new construction. This document gives an overview of the use of prefabricated panels in building Net Zero Energy Ready wood-frame multi-unit residential buildings (MURBs) in Edmonton.
Online Access
Free
Resource Link
Less detail

An Overview on Retrofit for Improving Building Energy Efficiency

https://research.thinkwood.com/en/permalink/catalogue365
Year of Publication
2015
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Wang, Jieying
Ranger, Lindsay
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Concrete
Energy Consumption
Envelope
Retrofit
Single Family Houses
Steel
Language
English
Research Status
Complete
Summary
This literature review aims to provide a general picture of retrofit needs, markets, and commonly used strategies and measures to reduce building energy consumption, and is primarily focused on energy retrofit of the building envelope. Improving airtightness and thermal performance are the two key aspects for improving energy performance of the building envelope and subsequently reducing the energy required for space heating or cooling. This report focuses on the retrofit of single family houses and wood-frame buildings and covers potential use of wood-based systems in retrofitting the building envelope of concrete and steel buildings. Air sealing is typically the first step and also one of the most cost-effective measures to improving energy performance of the building envelope. Airtightness can be achieved through sealing gaps in the existing air barrier, such as polyethylene or drywall, depending on the air barrier approach; or often more effectively, through installing a new air barrier, such as an airtight exterior sheathing membrane or continuous exterior insulation during retrofit. Interface detailing is always important to achieve continuity and effectiveness of an air barrier. For an airtight building, mechanical ventilation is needed to ensure good indoor air quality and heat recovery ventilators are typically required for an energy efficient building. Improving thermal resistance of the building envelope is the other key strategy to improve building energy efficiency during retrofit. This can be achieved by: 1. blowing or injecting insulation into an existing wall or a roof; 2. building extra framing, for example, by creating double-stud exterior walls to accommodate more thermal insulation; or, 3. by installing continuous insulation, typically on the exterior. Adding exterior insulation is a major solution to improving thermal performance of the building envelope, particularly for large buildings. When highly insulated building envelope assemblies are built, more attention is required to ensure good moisture performance. An increased level of thermal insulation generally increases moisture risk due to increased vapour condensation potential but reduced drying ability. Adding exterior insulation can make exterior structural components warmer and consequently reduce vapour condensation risk in a heating climate. However, the vapour permeance of exterior insulation may also affect the drying ability and should be taken into account in design. Overall energy retrofit remains a tremendous potential market since the majority of existing buildings were built prior to implementation of any energy requirement and have large room available for improving energy performance. However, significant barriers exist, mostly associated with retrofit cost. Improving energy performance of the building envelope typically has a long payback time depending on the building, climate, target performance, and measures taken. Use of wood-based products during energy retrofit also needs to be further identified and developed.
Online Access
Free
Resource Link
Less detail

Comparison of Operational Energy Performance among Exterior Wall Systems for Mid-Rise Construction in Canada

https://research.thinkwood.com/en/permalink/catalogue355
Year of Publication
2015
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Author
Wang, Jieying
Morris, Paul
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Topic
Energy Performance
Keywords
Mid-Rise
Canada
Exterior Walls
Energy Consumption
Residential
National Energy Code of Canada for Buildings
Climate
Steel-Stud Framing
Language
English
Research Status
Complete
Summary
The largest source of energy consumption and greenhouse gas emissions in Canada and around the world is buildings. As a consequence, building designers are encouraged to adopt designs that reduce operational energy, through both increasingly stringent energy codes and voluntary green building programs that go beyond code requirements. Among structural building materials, wood has by far the lowest heat conductivity. As a result it is typically easier to meet certain insulation targets (e.g., thermal transmission and effective thermal resistance) with wood-based wall systems when following current construction practices. Good envelopes greatly contribute to energy efficient buildings. However, there are many factors in addition to building envelope insulation levels that affect the operational energy of a building. This study aims to provide designers with information which will assist them to choose energy efficient exterior wall systems by providing energy consumption estimates for an archetypal 6-storey residential building. Comparisons were made among several exterior wall systems including light wood-framing, cross-laminated timber (CLT), steel-stud framing, and window walls, for a range of structural systems including structural steel, light wood-frame, CLT, heavy timber, and concrete. The opaque exterior wall assemblies targeted meeting the minimum thermal requirements based on the National Energy Code of Canada for Buildings (NECB. NRC 2011). A 3-D method was used to calculate effective R-values of these exterior walls by taking into account all thermal bridging, in comparison with a parallel-path flow method in compliance with the NECB. Three glazing ratios, including 30%, 50%, and 70%, and two efficiency levels for Heating, Ventilation, & Air Conditioning (HVAC) systems, termed basic HVAC and advanced HVAC, were also assessed. Whole-building energy consumption was simulated using EnergyPlus. Four climates, from Zone 4 to Zone 7, with cities of Vancouver, Toronto, Ottawa, and Edmonton to represent each climate, were selected in this study. The energy assessment was conducted by Morrison Hershfield.
Online Access
Free
Resource Link
Less detail

Construction Moisture Management, Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2685
Year of Publication
2020
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Topic
Moisture
Keywords
Wetting
Risk Mitigation
Drying
Language
English
Research Status
Complete
Summary
Cross-Laminated Timber (CLT) is an engineered mass timber product manufactured by laminating dimension lumber in layers with alternating orientation using structural adhesives. It is intended for use under dry service conditions and is commonly used to build floors, roofs, and walls. Because prolonged wetting of wood may cause staining, mould, excessive dimensional change (sometimes enough to fail connectors), and even result in decay and loss of strength, construction moisture is an important consideration when building with CLT. This document aims to provide technical information to help architects, engineers, and builders assess the potential for wetting of CLT during building construction and identify appropriate actions to mitigate the risk.
Online Access
Free
Resource Link
Less detail

Evolution of the Building Envelope in Modern Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1799
Year of Publication
2017
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Keywords
Energy Efficiency
Building Envelope
Tall Wood
Wood Infill Walls
Podium Structures
Articulated Buildings
Language
English
Research Status
Complete
Summary
This report provides an overview of major changes occurred in the recent decade to design and construction of the building envelope of wood and wood-hybrid construction. It also covers some new or unique considerations required to improve building envelope performance, due to evolutions of structural systems, architectural design, energy efficiency requirements, or use of new materials. It primarily aims to help practicioners better understand wood-based building envelope systems to improve design and construction practices. The information provided should also be useful to the wood industry to better understand the demands for wood products in the market place. Gaps in research are identified and summarized at the end of this report.
Online Access
Free
Resource Link
Less detail

Field Hygrothermal Performance of R22+ Wood-Frame Walls in Vancouver

https://research.thinkwood.com/en/permalink/catalogue2775
Year of Publication
2021
Topic
Moisture
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Walls
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Energy Performance
Keywords
Hygrothermal Performance
Exterior Wall
Mid-Rise
Panels
Language
English
Research Status
Complete
Summary
A test program was conducted to generate hygrothermal performance data for light-wood-frame exterior walls meeting the R22 effective (RSI 3.85) requirement for buildings up to six storeys in the City of Vancouver. Six types of exterior wall assemblies, with 12 wall panels in total, were tested using a test hut located in the rear yard of FPInnovations’ Vancouver aboratory. This document provides a brief summary of the test and performance of these walls based on the data collected over the 19 months’ period from October 2018 to May 2020
Online Access
Free
Resource Link
Less detail

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre

https://research.thinkwood.com/en/permalink/catalogue1182
Year of Publication
2018
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Roofs
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Roofs
Topic
Serviceability
Moisture
Keywords
Vertical Movement
Moisture Content
Temperature
Relative Humidity
Monitoring
Language
English
Research Status
Complete
Summary
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying too slowly after they become wet during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity for non-destructive testing and monitoring to measure the ‘As Built’ performance of a relatively tall mass timber building. Field measurements also provide performance data to support regulatory and market acceptance of wood-based systems in tall and large buildings. This report covers vertical movement and roof moisture performance measured from this building for about three and a half years, with sensors installed during the construction. The report first describes instrumentation. The locations selected for installing displacement sensors for measuring vertical movement comprised of the following: glued-laminated timber (glulam) columns together with cross-laminated timber (CLT) floors on three lower floors; a glulam column together with a parallel strand lumber (PSL) transfer beam on the first floor; and a CLT shear wall of the core structure on each floor from the second up to the top floor. Sensors were also installed to measure environmental conditions (temperature and relative humidity) in the immediate vicinity of the components being monitored. In addition, six locations in the timber roof were selected and instrumented for measuring moisture changes in the wood as well as the local environmental conditions. Most sensors went into operation in the middle of March 2014, after the roof sheathing was installed.
Online Access
Free
Resource Link
Less detail

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre

https://research.thinkwood.com/en/permalink/catalogue1638
Year of Publication
2016
Topic
Moisture
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Roofs
Wood Building Systems
Author
Wang, Jieying
Karsh, Eric
Finch, Graham
Chen, Mingyuk
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Roofs
Wood Building Systems
Topic
Moisture
Serviceability
Keywords
Moisture Content
Vertical Movement
Temperature
Relative Humidity
Monitoring
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3152-3160
Summary
The Wood Innovation and Design Centre (WIDC) in Prince George, British Columbia, with 6 tall storeys and a total height of 29.5 m, provided a unique opportunity for non-destructive testing and monitoring to measure the ‘As Built’ performance of a relatively tall mass timber building. The mass timber structural system consists of glulam columns and beams with cross laminated timber (CLT) floor plates and shear walls. Vertical movement of selected glulam columns and CLT walls and the moisture content of the innovative mass timber roof were monitored as these components are unique to mass timber buildings. Indoor temperature and relative humidity conditions were also measured. The mass timber CLT and glulam elements are susceptible to longer-term differential movement as they slowly dry after manufacturing and construction. The paper describes instrumentation and discusses the measurement results for two years following the topping out of the structure. The monitoring indicated that the wood inside the building could reach a moisture content (MC) close to 4% in the winter in this cold climate, from an initial MC of around 13% during construction. Glulam columns were dimensionally stable in the longitudinal direction given the MC changes and loading conditions. With a height of over 5 m and 6 m, respectively, two glulam columns directly measured by sensors each showed vertical movement below 3 mm (i.e., 0.04%). The cumulative shortening of the six glulam columns along the height of the columns (24.5 m) is expected to be approximately 11 mm. This did not take into consideration any potential settlement or deformation at connections between glulam columns, or effects of reduced loads on the top two unoccupied floors. The CLT wall panels were also dimensionally stable along the height of the building, with cumulative vertical shrinkage of about 19 mm (i.e., 0.07%) from Level 1 to Level 6. In contrast, the 5-ply CLT floor slabs made up of wood in radial and tangential grain shrank in thickness by about 5 mm (3.0%) on average. With regards to the performance of the mass timber roof, the CLT roof panels started out dry and remained dry due to the robust assembly design and the dry indoor conditions. In one area the plywood roof sheathing was initially wetted by the application of a concrete topping below a piece of mechanical equipment, it was able to dry to the interior within a few months. Overall the monitoring study showed that the differential movement occurring among the glulam columns and the CLT wall was small and the mass timber roof design had good drying performance.
Online Access
Free
Resource Link
Less detail

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre: Instrumentation and First Year's Performance

https://research.thinkwood.com/en/permalink/catalogue102
Year of Publication
2015
Topic
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Serviceability
Keywords
Differential Movement
Long-term
Moisture
Plywood
Roofs
Shrinkage
Tall Wood
Vertical Movement
Language
English
Research Status
Complete
Summary
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying slowly after they are wetted during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity for non-destructive testing and monitoring to measure the ‘As Built’ performance of a relatively tall mass timber building. Field measurements also provide performance data to support regulatory and market acceptance of wood-based systems in tall and large buildings. This report first describes instrumentation to measure the vertical movement of selected glulam columns and cross-laminated timber (CLT) walls in this building. Three locations of glulam columns and one CLT wall of the core structure were selected for measuring vertical movement along with the environmental conditions (temperature and humidity) in the immediate vicinity. The report then describes instrumentation to measure the moisture changes in the wood roof structure. Six locations in the roof were selected and instrumented for measuring moisture changes in the wood as well as the local environmental conditions.
Online Access
Free
Resource Link
Less detail

Gestion de l'Humidité en Construction, Bois Lamellé-Croisé

https://research.thinkwood.com/en/permalink/catalogue2686
Year of Publication
2020
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Topic
Moisture
Keywords
Wetting
Risk Mitigation
Drying
Language
French
Research Status
Complete
Summary
Le bois lamellé-croisé (CLT) est un produit massif de bois d’ingénierie qui est fabriqué à partir de multiples pièces de bois de dimension assemblées en couches orthogonales avec des adhésifs structuraux. Ce produit est conçu pour des conditions de service sèches et est couramment utilisé pour construire des planchers, des toits et des murs. Comme l’humidification prolongée du bois peut causer des taches, de la moisissure, des variations dimensionnelles excessives (parfois suffisantes pour provoquer la défaillance des attaches), et même la pourriture et la perte de résistance, l’humidité est un facteur important dans la construction avec le CLT. Le présent document a pour but de fournir de l’information technique pouvant aider les architectes, les ingénieurs et les constructeurs à évaluer les risques d’humidification du CLT pendant la construction de bâtiments et à prendre les mesures appropriées pour atténuer ces risques.
Online Access
Free
Resource Link
Less detail

25 records – page 1 of 3.