Skip header and navigation

4 records – page 1 of 1.

Developing an Application for Mass Plywood Panels in Seismic and Energy Wall Retrofit

https://research.thinkwood.com/en/permalink/catalogue2568
Topic
Energy Performance
Seismic
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Organization
University of Oregon
Oregon State University
TallWood Design Institute
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Topic
Energy Performance
Seismic
Keywords
Retrofit
Assembly
Prefabrication
Research Status
In Progress
Notes
Project contact is Mark Fretz at the University of Oregon
Summary
University of Oregon and Oregon State University are collaborating through TallWood Design Institute (TDI) to upgrade aging, energy inefficient and seismically unprepared multifamily housing by developing a mass plywood (MPP) retrofit panel assembly that employs digital workflows and small diameter logs (down to 5") to create an economically viable energy/seismic retrofit model for the West Coast and beyond. The project has broad potential to support forested federal land management agencies and private forestry by proving a new market for small diameter logs.
Less detail

Facilitation of Acoustics Testing for Sustainable Mass Timber Technologies, Leading to Publication of Open Source Acoustics Data for Standard Acoustics Scenarios

https://research.thinkwood.com/en/permalink/catalogue2629
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Organization
University of Oregon
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Acoustics Testing Facility
Research Status
In Progress
Notes
Project contact is Kevin Van Den Wymelenberg at the University of Oregon
Summary
Our aim is to support the acceptance and increase market share of sustainable mass timber construction technologies such as Cross Laminated Timber (CLT), Mass Plywood Panel (MPP), Glue Laminated Timber (GLT), and Nail Laminated Timber (NLT), by lowering or eliminating barriers due to lack of acoustics data for mass timber construction assemblies. Currently, sustainable mass timber projects carry the cost of required acoustics testing, impairing their economic feasibility. With our new acoustics testing facility, testing supported by this grant will produce common acoustics data on the assemblies most in market demand. These data will be hosted in an online open-access database, supporting rapid growth in this industry. Increasingly specialized testing scenarios will be more easily accommodated, as this facility is located closer to USFS source materials and production facilities than currently operating facilities and is designed specifically for the specialized requirements of testing mass timber assemblies. Since sustainable mass timber technologies allow increased utilization of lower quality timber, and timber with insect damage, increasing the market share of mass timber will increase utilization of USFS timber, specifically that which might otherwise remain on-site unused. With removal of this type of timber, fire load will be lessened as well. Initial testing supported by this grant will include mass timber assemblies constructed with lower quality and smaller dimension timber.
Less detail

Oregon Cross-Laminated Timber; An Economic Solution to Incorporating Timber into Cap and Trade

https://research.thinkwood.com/en/permalink/catalogue2706
Year of Publication
2020
Topic
Environmental Impact
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Lutje, Dakoata
Organization
University of Oregon
Publisher
University of Oregon
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Market and Adoption
Keywords
Cap and Trade
Greenhouse gas emissions
Environmental Impact
Research Status
Complete
Summary
As the state of Oregon begins to introduce a new cap and trade program to reduce the effects of its greenhouse gas emissions, the state has opted not to incorporate its largest greenhouse gas emitter; the timber industry. The decline of the timber industry after the 1980’s had lasting effects on disadvantaged communities, and state politicians have battled the cap and trade bill in fear of further deterioration of the timber industry. In this paper I aim to take an in depth look at the potential that CLT has in Oregon, how it can be promoted by the government, and what the environmental effects of it are. I found that, with the rise of mass timber construction and promotion of green building, the state has the opportunity to use revenues from its cap and trade program to economically incentivize CLT construction that can provide relief to economically stressed rural logging communities, all whole bolstering its efforts to better the environmental impact of an ever expanding construction industry.
Online Access
Free
Resource Link
Less detail

Overcoming Market Barriers to Increase Use of Structural Mass Timber in Healthcare Environment

https://research.thinkwood.com/en/permalink/catalogue2567
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Organization
University of Oregon
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Market and Adoption
Keywords
Healthcare
Hygienic Performance
Moisture Performance
Research Status
In Progress
Notes
Project contact is Kevin Van Den Wymelenberg at the University of Oregon
Summary
The goal of this project is to accelerate the application of structural mass timber, such as cross-laminated timber (CLT), in outpatient healthcare construction. In particular, this project will address concerns related to hygienic and moisture performance of CLT, as well as exploring other challenges faced in mass timber construction. The project will engage with industry partners representing architecture, engineering, and construction (AEC), healthcare professionals, and policy-makers to advance the state of knowledge and market penetration of CLT in healthcare. Healthcare construction is a large and growing sector; pioneering the use of CLT in this market would significantly increase utilization of small-diameter and lower-quality timber. Ultimately, successful implementation of this project would help achieve USFS regional priorities of supporting ecosystem restoration and wildland fire management, as well as Oregon’s State Forest Action Plan goals of protecting communities at risk of wildfire, maintaining the forestland base, and preserving diversity of upland habitats.
Less detail