This project studied the feasibility and performance of a mass timber wall system based on Nail Laminated Timber (NLT) for floor/wall applications, in order to quantify the effects of various design parameters. Thirteen 2.4 m × 2.4 m shear walls were manufactured and tested in this phase. Together with another five specimens tested before, a total eighteen shear wall specimens and ten configurations were investigated. The design variables included fastener type, sheathing thickness, number of sheathings, sheathing material, nailing pattern, wall opening, and lumber orientation. The NLT walls were made of SprucePine-Fir (SPF) No. 2 2×4 (38 mm × 89 mm) lumber and Oriented Strand Lumber (OSB) or plywood sheathing. They were tested under monotonic and reverse-cyclic loading protocols, in accordance with ASTM E564-06 (2018) and ASTM E2126-19, respectively.
Compared to traditional wood stud walls, the best performing NLT based shear wall had 2.5 times the peak load and 2 times the stiffness at 0.5-1.5% drift, while retaining high ductility. The advantage of these NLT-based wall was even greater under reverse-cyclic loading due to the internal energy dissipation of NLT.
The wall with ring nails had higher stiffness than the one with smooth nails. But the performance of ring nails deteriorated drastically under reverse-cyclic loading, leading to a considerably lower capacity. Changing the sheathing thickness from 11 mm to 15 mm improved the strength by 6% while having the same initial stiffness. Adding one more face of sheathing increased the peak load and stiffness by at least 50%. The wall was also very ductile as the load dropped less than 10% when the lateral displacement exceeded 150 mm. The difference created by sheathing material was not significant if they were of the same thickness. Reducing the nailing spacing by half led to a 40% increasing in the peak load and stiffness. Having an opening of 25% of the area at the center, the lateral capacity and stiffness reached 75% or more of the full wall.
A simplified method to estimate the lateral resistance of this mass timber wall system was proposed. The estimate was close to the tested capacity and was on the conservative side. Recommendations for design and manufacturing the system were also presented.
This project studied the effect of openings on the lateral performance of CLT shear walls
and the system behavior of the walls in a module. Three-layer Cross Laminated Timber
(CLT) was used for manufacturing the wall and module specimens. The laminar was
Spruce-Pine-Fir (SPF) #2&Better for both the major and minor layers. Each layer was 35
mm thick. The panel size was 2.44 m × 2.44 m.
Four configurations of walls were investigated: no opening, 25% opening, 37.5% opening,
and 50% opening. The opening was at the center of the wall and in the shape of a square.
A CLT module was made from two walls with 50% openings, with an overall thickness of
660 mm. The specimens were tested under monotonic loading and reverse-cyclic loading,
in accordance with ASTM E564-06 (2018) and ASTM E2126-19.
The wall without opening had an average peak load of 111.8 kN. It had little internal
deformation and the failure occurred at the connections. With a 25% opening, deformation
within the wall was observed but the failure remained at the connections. It had the same
peak load as the full wall. When the opening was increased to 37.5%, the peak load
decreased by 6% to 104.9 kN and the specimens failed in wood at the corners of the
opening. Further increasing the opening to 50%, the peak load dropped drastically to 63.4
kN, only 57% of the full wall.
The load-displacement relationship was approximately linear until the load reached 60%
of the peak or more. Compared to the full wall, the wall with 25% opening had 65% of the
stiffness. When the opening increased to 37.5% and 50%, the stiffness reduced to 50% and
24% of the full wall, respectively. The relationship between stiffness and opening ratio was
approximately linear. The loading protocol had effect on the peak load but not on the
stiffness. There was more degradation for larger openings under reverse-cyclic loading.
The performance of the module indicated the presence of system effect that improves the
ductility of the wall, which is important for the seismic performance of the proposed
midrise to tall wood buildings. The test data was compared to previous models found in
literature. Simplified analytical models were also developed to estimate the lateral stiffness
and strength of CLT wall with openings.