Skip header and navigation

3 records – page 1 of 1.

Bending Tests with Glulam Columns under Eccentric Normal Force Stress

https://research.thinkwood.com/en/permalink/catalogue1138
Year of Publication
2015
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Frangi, Andrea
Theiler, Matthias
Organization
ETH Zurich
Year of Publication
2015
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Load Bearing Capacity
Axial Compression
Buckling Tests
Spruce
Research Status
Complete
Summary
The force-displacement behaviour of structural timber members subjected to axial compression or combined axial compression and bending is distinctively non-linear. This behaviour is caused by the non-linear increase of the deformation due to the increasing eccentricity of the axial load as well as by the non-linear material behaviour of timber when subjected to compression. The present report describes experimental investigations on glued laminated timber members subjected to eccentric compression. The aim of these experimental investigations was to create a data base, which can be used to validate theoretical calculation models and to assess the accurateness of the design approaches given in the design codes for timber structures. The specimens for the main bunch of experiments were produced using lamellas made of Norway spruce grown in Switzerland. For this purpose, a total of 336 lamellas were available. In the first step, non-destructive tests on the lamellas were performed. These tests aimed at the collection of data in order to characterise the raw material. In the second step, the lamellas were strength graded. The aim of the grading process was to select two classes of lamellas for the production of the test specimens. The lamellas were selected so that they were suitable to produce glued laminated timber of strength classes GL24h and GL32h. Within the grading process, visual grading criteria as well as machine grading criteria were used. In the third step, the graded lamellas were used to produce glued laminated timber members. Five tests series were produced. Each of the test series consisted of ten specimens. Three series were made of glued laminated timber GL24h and two series were made of glued laminated timber GL32h. The length of the timber members was varied between the different test series. The lengths were L = 1’400 mm, L = 2’300 mm and L = 3’200 mm respectively. During the production, the setup of the test specimens was recorded. Hence, the position and the orientation of every lamella within the test specimen were documented. Additionally, some non-destructive tests were performed using the test specimens. In the last step, the glued laminated timber members were subjected to buckling tests. The test specimens were loaded with an eccentric compression force up to failure. During the tests, different measurements were carried out in order to document the experimental investigations as accurate as possible. Amongst others, the applied loads as well as horizontal and vertical deformations were recorded. For a subsample of 20 test specimens, additional local deformation measurements were performed using an optical measurement device.
Online Access
Free
Resource Link
Less detail

Design of Timber Members Subjected to Axial Compression or Combined Axial Compression and Bending Based on 2nd Order Theory

https://research.thinkwood.com/en/permalink/catalogue115
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Author
Frangi, Andrea
Steiger, René
Theiler, Matthias
Organization
International Network on Timber Engineering Research (INTER)
Year of Publication
2015
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Topic
Design and Systems
Mechanical Properties
Keywords
Bending
Buckling
Codes
Compression
Deformation
Monte Carlo
Simulation
Structural
Testing
Conference
INTER 2015
Research Status
Complete
Notes
August 24-27, 2015, Sibenik, Croatia
Summary
The paper examines the behaviour of structural timber members subjected to axial compression or combined axial compression and bending. Based on experimental and numerical investigations, the accuracy of the existing approach in Eurocode 5 for the design of timber members subjected to axial compression or combined axial compression and bending is assessed and modifications are suggested. By means of extensive experimental investigations, a data base was created for the validation of calculation models and for the assessment of design concepts. In order to assess the behaviour of timber members subjected to axial compression or combined axial compression and bending, strain-based calculation models were developed. The investigations indicate that the existing approach of Eurocode 5 based on 2nd order analysis can lead to an overestimation of the load-bearing capacity. Hence, a modified design approach was developed which agrees with the results of the Monte Carlo simulations very well and thus ensures a safe and economical design of timber members subjected to compression or combined compression and bending.
Online Access
Free
Resource Link
Less detail

Stability of Axial Pressure-Stressed Components Made of Solid Wood and Glulam

https://research.thinkwood.com/en/permalink/catalogue1141
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Author
Theiler, Matthias
Organization
ETH Zurich
Year of Publication
2014
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Topic
Mechanical Properties
Keywords
Axial Compression
Bending
Monte Carlo
Load Bearing Capacity
Research Status
Complete
Summary
This thesis examines the behaviour of structural timber members subjected to compression alone or in combination with bending. Based on experimental and numerical investigations, the knowledge on the behaviour of these timber members is extended and advanced calculation models are developed. In addition, the accuracy of existing approaches for the design of these members is assessed and modifications are suggested. By means of extensive experimental investigations, a data base was created which can be used for the validation of calculation models and for the assessment of design concepts. The experimental investigations are carried out on eccentrically loaded compression members made of glued laminated timber. Different parameters such as the strength class of the glued laminated timber or the slenderness ratio of the members are investigated.
Online Access
Free
Resource Link
Less detail