Skip header and navigation

2 records – page 1 of 1.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: Seismic Performance of Braced Mass Timber Frames, Year 1

https://research.thinkwood.com/en/permalink/catalogue2640
Year of Publication
2019
Topic
Seismic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2019
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Keywords
Lateral Load
Seismic Performance
Braced Frames
Language
English
Research Status
Complete
Summary
Braced mass timber (MT) frames are one of the most efficient structural systems to resist lateral loads induced by earthquakes or high winds. Although braced frames are presented as a system in the National Building Code of Canada (NBCC), no design guidelines currently exist in CSA O86. That not only leaves these efficient systems out of reach of designers, but also puts them in danger of being eliminated from NBCC. The main objective of this project was to develop the technical information needed for development of design guidelines for braced MT frames as a lateral load resisting system in CSA O86. In the first year of the project, the seismic performance of thirty (30) braced MT frames with riveted connections with various numbers of storeys, storey heights, and bay aspect ratios were studied by conducting non-linear pushover and dynamic time-history analyses. Also, fifteen (15) glulam brace specimens using bolted connections with different slenderness ratios were tested under monotonic and cyclic loading. Results from this multi-year project will form the basis for developing comprehensive design guidelines for braced frames in CSA O86.
Online Access
Free
Resource Link
Less detail