Skip header and navigation

2 records – page 1 of 1.

Alternate Load-Path Analysis for Mid-Rise Mass-Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1233
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Mpidi Bita, Hercend
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2018
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Alternate Load-Path Analysis
Disproportionate Collapse
Lateral Loads
Language
English
Conference
Structures Conference 2018
Research Status
Complete
Notes
April 19–21, 2018, Fort Worth, Texas
Summary
This paper presents an investigation of possible disproportionate collapse for a nine-storey flat-plate timber building, designed for gravity and lateral loads. The alternate load-path analysis method is used to understand the structural response under various removal speeds. The loss of the corner and penultimate ground floor columns are the two cases selected to investigate the contribution of the cross-laminated timber (CLT) panels and their connections, towards disproportionate collapse prevention. The results show that the proposed building is safe for both cases, if the structural elements are removed at a speed slower than 1 sec. Disproportionate collapse is observed for sudden element loss, as quicker removal speed require higher moments resistance, especially at the longitudinal and transverse CLT floor-to-floor connections. The investigation also emphasises the need for strong and stiff column-to-column structural detailing as the magnitude of the vertical downward forces, at the location of the removed columns, increases for quicker removal.
Online Access
Payment Required
Resource Link
Less detail

Timber Tower Research: Concrete Jointed Timber Frame

https://research.thinkwood.com/en/permalink/catalogue440
Year of Publication
2014
Topic
Design and Systems
Environmental Impact
Application
Hybrid Building Systems
Author
Baker, William
Horos, David
Johnson, Benton
Schultz, Joshua
Organization
Structures Congress
Year of Publication
2014
Country of Publication
United States
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Design and Systems
Environmental Impact
Keywords
Carbon Dioxide Emissions
Tall Wood
Concrete Jointed Timber Frame
Language
English
Conference
Structures Congress 2014
Research Status
Complete
Notes
April 3-5, 2014, Boston, Massachusetts, United States
Summary
The goal of this research was to develop a structural system for tall buildings using mass-timber as the main structural material that reduces the carbon dioxide emissions associated with the structure. The structural system research was applied to a prototypical building based on an existing concrete benchmark for comparison. This paper discusses key design issues associated with tall mass-timber buildings along with potential solutions. It is believed that the system proposed in the research and discussed in the paper could mitigate many of these design issues. The main structural mass-timber elements are connected by steel reinforcing through cast-in-place concrete at the connection joints. This system plays to the strengths of both materials and allows the designer to apply sound tall building engineering fundamentals. The result is believed to be an efficient structure that could compete with reinforced concrete and structural steel while reducing the associated carbon emissions by 60 to 75%.
Online Access
Payment Required
Resource Link
Less detail