Skip header and navigation

2 records – page 1 of 1.

Post-Tensioned Mass Timber Systems

https://research.thinkwood.com/en/permalink/catalogue1256
Year of Publication
2017
Topic
Design and Systems
Seismic
Application
Frames
Shear Walls
Author
Iqbal, Asif
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Format
Conference Paper
Application
Frames
Shear Walls
Topic
Design and Systems
Seismic
Keywords
North America
New Zealand
Post-Tensioning Cables
Post-Tensioned
Multi-Story
Lateral Load Resisting Systems
High Seismic Regions
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
A new type of mass timber structural system has been developed in New Zealand over the last decade. Timber members made of engineered wood products are used in combination with post-tensioning cables to produce highly efficient structural components suitable for multi-story moment resisting frames or shear wall-based lateral load resisting systems. Both systems are particularly useful in structures designed in high seismic regions. The post-tensioning also ensures self-centering of the components and the structural systems after a seismic event. In addition to the post-tensioning, the systems can use energy dissipating devices within the connections that further enhance the ductility of the systems and make them good candidates for low damage structural applications. Extensive experimental and numerical studies have been conducted to determine the performance of these systems and design procedures have been developed for practical applications. In an effort to bring this system closer to the North American designers, this paper contains a summary of the evolution of the concept and the most important research projects and findings to date. In addition, a number of applications within and outside New Zealand are reviewed to demonstrate the applicability of the concept. Finally, potential and recent initiatives for adoption of the technology in North America are discussed.
Online Access
Payment Required
Resource Link
Less detail

Shear Connections with Self-Tapping-Screws for Cross-Laminated-Timber Panels

https://research.thinkwood.com/en/permalink/catalogue432
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hossain, Afrin
Lakshman, Ruthwik
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Ductility
Self-Tapping Screws
Stiffness
Strength
Vertical Shear Loading
Mid-Scale
Quasi-Static
Shear Tests
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
Cross-Laminated-Timber (CLT) is increasingly gaining popularity in residential and non-residential applications in North America. To use CLT as lateral load resisting system, individual panels need to be connected. In order to provide in-plane shear connections, CLT panels may be joined with a variety of options including the use of self-tapping-screws (STS) in surface splines and half-lap joints. Alternatively, STS can be installed at an angle to the plane allowing for simple butt joints and avoiding any machining. This study investigated the performance of CLT panel assemblies connected with STS under vertical shear loading. The three aforementioned options were applied to join 3ply and 5-ply CLT panels. A total of 60 mid-scale quasi-static shear tests were performed to determine and compare the connection performance in terms of strength, stiffness, and ductility. It was shown that – depending on the screw layout – either very stiff or very ductile joint performance can be achieved.
Online Access
Payment Required
Resource Link
Less detail