Skip header and navigation

2 records – page 1 of 1.

Fire Safety and Tall Timber Buildings—What’s Next?

https://research.thinkwood.com/en/permalink/catalogue1253
Year of Publication
2017
Topic
Design and Systems
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Barber, David
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Fire Safety
Exposed Load Bearing Timber
Concealed Connections
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
Model building codes in the United States limit timber construction to six stories, due to concerns over fire safety and structural performance. With new timber technologies, tall timber buildings are now being planned for construction. The process for building approval for a building constructed above the code height limits with a timber load-bearing structure, is by an alternative engineering means. Engineering solutions are required to be developed to document and prove equivalent performance to a code compliant structure, where approval is based on substantive consultation and documentation. Architects in the US are also pushing the boundaries and requesting load-bearing timber be exposed and not fully encapsulated in fire rated gypsum drywall. This provides an opportunity for the application of recent fire research on exposed timber to be applied, and existing methods of analyzing the impact of fire on engineered timber structures to be developed further. This paper provides an overview of the performance based fire safety engineering required for building approval and also describes the engineering methodologies that can be utilized to address specific exposed load-bearing timber issues; concealed connections for glulam beams; and the methodology to address areas of exposed timber.
Online Access
Payment Required
Resource Link
Less detail

Shear Connections with Self-Tapping-Screws for Cross-Laminated-Timber Panels

https://research.thinkwood.com/en/permalink/catalogue432
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hossain, Afrin
Lakshman, Ruthwik
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Ductility
Self-Tapping Screws
Stiffness
Strength
Vertical Shear Loading
Mid-Scale
Quasi-Static
Shear Tests
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
Cross-Laminated-Timber (CLT) is increasingly gaining popularity in residential and non-residential applications in North America. To use CLT as lateral load resisting system, individual panels need to be connected. In order to provide in-plane shear connections, CLT panels may be joined with a variety of options including the use of self-tapping-screws (STS) in surface splines and half-lap joints. Alternatively, STS can be installed at an angle to the plane allowing for simple butt joints and avoiding any machining. This study investigated the performance of CLT panel assemblies connected with STS under vertical shear loading. The three aforementioned options were applied to join 3ply and 5-ply CLT panels. A total of 60 mid-scale quasi-static shear tests were performed to determine and compare the connection performance in terms of strength, stiffness, and ductility. It was shown that – depending on the screw layout – either very stiff or very ductile joint performance can be achieved.
Online Access
Payment Required
Resource Link
Less detail