Skip header and navigation

2 records – page 1 of 1.

Experimental Investigations of Post-Tensioned Timber Frames with Advanced Seismic Damping Systems

https://research.thinkwood.com/en/permalink/catalogue464
Year of Publication
2012
Topic
Mechanical Properties
Seismic
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Smith, Tobias
Carradine, David
Di Cesare, Antonio
Carlo Ponzo, Felice
Pampanin, Stefano
Buchanan, Andrew
Nigro, Domenico
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2012
Country of Publication
United States
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Mechanical Properties
Seismic
Keywords
Damping
Energy Dissipation
Full Scale
Post-Tensioning
Language
English
Conference
Structures Congress 2012
Research Status
Complete
Notes
March 29-31, 2012, Chicago, Illinois, United States
Summary
This paper describes initial experimental testing to investigate feasible sources of passive damping for the seismic design of post-tensioned glue laminated timber structures. These innovative high performance structural systems extend precast concrete PRESSS technology to engineered wood structures, combining the use of post-tensioning bars or cables with large post-tensioned timber members. The combination of these two elements provides elastic recentering to the structure while the addition of damping using a specialised energy dissipation system gives the desirable `flag shaped' hysteretic response under lateral loading. Testing has been performed on a full scale beam-column joint at the University of Basilicata in Italy in a collaborative project with the University of Canterbury, New Zealand. The experimental testing uses engineered wood products, extending the use of laminated veneer lumber (LVL) structures tested in New Zealand to testing of glue laminated timber (glulam) structures in Italy. Current testing is aimed at further improvement of the system through additional energy dissipation systems.
Online Access
Payment Required
Resource Link
Less detail

Seismic Design and Analysis of a 20-Storey Demonstration Wood Building

https://research.thinkwood.com/en/permalink/catalogue667
Year of Publication
2015
Topic
Design and Systems
Seismic
Application
Hybrid Building Systems
Author
Chen, Zhiyong
Chui, Ying Hei
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Nonlinear time history analysis
Demonstration Building
Finite Element Model
Wood-Steel
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
This paper presents the seismic design and analysis of a 20-storey demonstration wood building, which was conducted as a part of the NEWBuildS tall wood building design project. A hybrid lateral load resisting system was chosen for the building. The system consisted of shear walls and a shear core, both made of structural composite lumber, connected with dowel-type connections and heavy-duty HSK (wood-steel-composite) system. The core and the shear walls were linked with horizontal steel beams at each floor. The wood-based panel-to-panel interface was designed to be the main energy dissipating mechanism of the system. A detailed finite element model of this building was developed and non-linear time history analyses were performed using 10 earthquake motions. The results showed that the seismic response of the 20-storey demonstration building met the various design criteria and the design details are appropriate.
Online Access
Payment Required
Resource Link
Less detail