Skip header and navigation

2 records – page 1 of 1.

Capacity-Based Design for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1255
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
In-Plane Stiffness
Strength
Non-Linear Springs
Finite Element Analysis
Hysteretic Behaviour
Cyclic Loading
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
The use of cross-laminated timber (CLT) in residential and non-residential buildings is becoming increasingly popular in North America. While the 2016 supplement to the 2014 edition of the Canadian Standard for Engineering Design in Wood, CSAO86, provides provisions for CLT structures used in platform type applications, it does not provide guidance for the in-plane stiffness and strength of CLT shearwalls. The research presented in this paper investigated the in-plane stiffness and strength of CLT shearwalls with different connections for platform-type construction. Finite element analyses were conducted where the CLT panels were modelled as an orthotropic elastic material, and non-linear springs were used for the connections. The hysteretic behaviour of the connections under cyclic loading was calibrated from quasi-static tests; the full model of wall assemblies was calibrated using experimental tests on CLT shearwalls. A parametric study was conducted that evaluated the change of strength and stiffness of walls with the change in a number of connectors. Finally, a capacity-based design procedure is proposed that provides engineers with guidance for designing platform-type CLT buildings. The philosophy of the procedure is to design the CLT buildings such that all non-linear deformations and energy dissipation occurs in designated connections, while all other connections and the CLT panels are designed with sufficient over-strength to remain linear elastic.
Online Access
Payment Required
Resource Link
Less detail

Truss Plates for Use as Wood-Concrete Composite Shear Connectors

https://research.thinkwood.com/en/permalink/catalogue732
Year of Publication
2012
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Clouston, Peggi
Schreyer, Alexander
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2012
Format
Conference Paper
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
shear connectors
Truss Plates
Slip-modulus
Ultimate Shear Capacity
Push-Out
Bending Stiffness
Strength
Four Point Bending Test
Conference
Structures Congress 2011
Research Status
Complete
Notes
April 14-16, 2011, Las Vegas, Nevada, United States
Summary
Wood-concrete composite systems are well established, structurally efficient building systems for both new construction and rehabilitation of old timber structures. Composite action is achieved through a mechanical device to integrally connect in shear the two material components, wood and concrete. Depending on the device, different levels of composite action and thus efficiency are achieved. The purpose of this study was to investigate the structural feasibility and effectiveness of using truss plates, typically used in the making of metal-plate-connected wood trusses, as shear connectors for laminated veneer lumber (LVL)-concrete composite systems. The experimental program consisted of two studies. The first study established slip-modulus and ultimate shear capacity of the truss plates when used in an LVL-concrete push out assembly. The second study evaluated overall composite bending stiffness and strength in two full size T-beams when subjected to four-point bending. One beam employed two continuous rows of truss plates and the other employed one row. It was found that the initial stiffness of both T-beams was similar for one and two rows of truss plates but that the ultimate capacity was approximately 20% less with the use of only one row.
Online Access
Payment Required
Resource Link
Less detail